These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 17511874)
21. Comparative studies on ion pumps of the bacterial rhodopsin family. Mukohata Y Biophys Chem; 1994 May; 50(1-2):191-201. PubMed ID: 8011934 [TBL] [Abstract][Full Text] [Related]
22. Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea. Nelson-Sathi S; Dagan T; Landan G; Janssen A; Steel M; McInerney JO; Deppenmeier U; Martin WF Proc Natl Acad Sci U S A; 2012 Dec; 109(50):20537-42. PubMed ID: 23184964 [TBL] [Abstract][Full Text] [Related]
23. Diversity, Mechanism, and Optogenetic Application of Light-Driven Ion Pump Rhodopsins. Inoue K Adv Exp Med Biol; 2021; 1293():89-126. PubMed ID: 33398809 [TBL] [Abstract][Full Text] [Related]
24. Of ion pumps, sensors and channels - perspectives on microbial rhodopsins between science and history. Grote M; Engelhard M; Hegemann P Biochim Biophys Acta; 2014 May; 1837(5):533-45. PubMed ID: 23994288 [TBL] [Abstract][Full Text] [Related]
25. New insights into the evolutionary history of type 1 rhodopsins. Ruiz-González MX; Marín I J Mol Evol; 2004 Mar; 58(3):348-58. PubMed ID: 15045490 [TBL] [Abstract][Full Text] [Related]
26. Strongly hydrogen-bonded water molecule present near the retinal chromophore of Leptosphaeria rhodopsin, the bacteriorhodopsin-like proton pump from a eukaryote. Sumii M; Furutani Y; Waschuk SA; Brown LS; Kandori H Biochemistry; 2005 Nov; 44(46):15159-66. PubMed ID: 16285719 [TBL] [Abstract][Full Text] [Related]
27. A blue-shifted light-driven proton pump for neural silencing. Sudo Y; Okazaki A; Ono H; Yagasaki J; Sugo S; Kamiya M; Reissig L; Inoue K; Ihara K; Kandori H; Takagi S; Hayashi S J Biol Chem; 2013 Jul; 288(28):20624-32. PubMed ID: 23720753 [TBL] [Abstract][Full Text] [Related]
28. Overexpression of Different Types of Microbial Rhodopsins with a Highly Expressible Bacteriorhodopsin from Haloarcula marismortui as a Single Protein in E. coli. Tu CH; Yi HP; Hsieh SY; Lin HS; Yang CS Sci Rep; 2018 Sep; 8(1):14026. PubMed ID: 30232361 [TBL] [Abstract][Full Text] [Related]
29. The primary structure of a halorhodopsin from Natronobacterium pharaonis. Structural, functional and evolutionary implications for bacterial rhodopsins and halorhodopsins. Lanyi JK; Duschl A; Hatfield GW; May K; Oesterhelt D J Biol Chem; 1990 Jan; 265(3):1253-60. PubMed ID: 2104837 [TBL] [Abstract][Full Text] [Related]
30. Discovery of bacteriorhodopsins in Haloarchaeal species isolated from Indian solar salterns: deciphering the role of the N-terminal residues in protein folding and functional expression. Verma DK; Baral I; Kumar A; Prasad SE; Thakur KG Microb Biotechnol; 2019 May; 12(3):434-446. PubMed ID: 30648822 [TBL] [Abstract][Full Text] [Related]
34. The evolutionary relationship between microbial rhodopsins and metazoan rhodopsins. Shen L; Chen C; Zheng H; Jin L ScientificWorldJournal; 2013; 2013():435651. PubMed ID: 23476135 [TBL] [Abstract][Full Text] [Related]
35. Shuttling between two protein conformations: the common mechanism for sensory transduction and ion transport. Spudich JL; Lanyi JK Curr Opin Cell Biol; 1996 Aug; 8(4):452-7. PubMed ID: 8791445 [TBL] [Abstract][Full Text] [Related]
36. Xenorhodopsins, an enigmatic new class of microbial rhodopsins horizontally transferred between archaea and bacteria. Ugalde JA; Podell S; Narasingarao P; Allen EE Biol Direct; 2011 Oct; 6():52. PubMed ID: 21985229 [TBL] [Abstract][Full Text] [Related]
37. Distribution and Diversity of Rhodopsin-Producing Microbes in the Chesapeake Bay. Maresca JA; Miller KJ; Keffer JL; Sabanayagam CR; Campbell BJ Appl Environ Microbiol; 2018 Jul; 84(13):. PubMed ID: 29703736 [TBL] [Abstract][Full Text] [Related]
38. Visual and archaeal rhodopsins: similarities, differences and controversy. Bryl K Cell Mol Biol Lett; 2003; 8(2):285-96. PubMed ID: 12813562 [TBL] [Abstract][Full Text] [Related]
39. A C-terminal truncation results in high-level expression of the functional photoreceptor sensory rhodopsin I in the archaeon Halobacterium salinarium. Ferrando-May E; Brustmann B; Oesterhelt D Mol Microbiol; 1993 Sep; 9(5):943-53. PubMed ID: 7934922 [TBL] [Abstract][Full Text] [Related]
40. Purification of histidine tagged bacteriorhodopsin, pharaonis halorhodopsin and pharaonis sensory rhodopsin II functionally expressed in Escherichia coli. Hohenfeld IP; Wegener AA; Engelhard M FEBS Lett; 1999 Jan; 442(2-3):198-202. PubMed ID: 9929001 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]