BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 17511884)

  • 1. Distinguishing enzymes using metabolome data for the hybrid dynamic/static method.
    Ishii N; Nakayama Y; Tomita M
    Theor Biol Med Model; 2007 May; 4():19. PubMed ID: 17511884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid dynamic/static method for large-scale simulation of metabolism.
    Yugi K; Nakayama Y; Kinoshita A; Tomita M
    Theor Biol Med Model; 2005 Oct; 2():42. PubMed ID: 16202166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic simulation of an in vitro multi-enzyme system.
    Ishii N; Suga Y; Hagiya A; Watanabe H; Mori H; Yoshino M; Tomita M
    FEBS Lett; 2007 Feb; 581(3):413-20. PubMed ID: 17239859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters.
    Moisset P; Vaisman D; Cintolesi A; Urrutia J; Rapaport I; Andrews BA; Asenjo JA
    Biotechnol Bioeng; 2012 Sep; 109(9):2325-39. PubMed ID: 22447363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iSCHRUNK--In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks.
    Andreozzi S; Miskovic L; Hatzimanikatis V
    Metab Eng; 2016 Jan; 33():158-168. PubMed ID: 26474788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an accurate kinetic model for the central carbon metabolism of Escherichia coli.
    Jahan N; Maeda K; Matsuoka Y; Sugimoto Y; Kurata H
    Microb Cell Fact; 2016 Jun; 15(1):112. PubMed ID: 27329289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. k-Cone analysis: determining all candidate values for kinetic parameters on a network scale.
    Famili I; Mahadevan R; Palsson BO
    Biophys J; 2005 Mar; 88(3):1616-25. PubMed ID: 15626710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction of elementary rate constants from global network analysis of E. coli central metabolism.
    Zhao J; Ridgway D; Broderick G; Kovalenko A; Ellison M
    BMC Syst Biol; 2008 May; 2():41. PubMed ID: 18462493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New experimental and theoretical tools for metabolic engineering of micro-organisms.
    Heijnen JJ
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3a):11-30. PubMed ID: 15954559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reducing the allowable kinetic space by constructing ensemble of dynamic models with the same steady-state flux.
    Tan Y; Rivera JG; Contador CA; Asenjo JA; Liao JC
    Metab Eng; 2011 Jan; 13(1):60-75. PubMed ID: 21075211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simplified method for power-law modelling of metabolic pathways from time-course data and steady-state flux profiles.
    Kitayama T; Kinoshita A; Sugimoto M; Nakayama Y; Tomita M
    Theor Biol Med Model; 2006 Jul; 3():24. PubMed ID: 16846504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current state and challenges for dynamic metabolic modeling.
    Vasilakou E; Machado D; Theorell A; Rocha I; Nöh K; Oldiges M; Wahl SA
    Curr Opin Microbiol; 2016 Oct; 33():97-104. PubMed ID: 27472025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ECMpy, a Simplified Workflow for Constructing Enzymatic Constrained Metabolic Network Model.
    Mao Z; Zhao X; Yang X; Zhang P; Du J; Yuan Q; Ma H
    Biomolecules; 2022 Jan; 12(1):. PubMed ID: 35053213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations.
    Costa RS; Machado D; Rocha I; Ferreira EC
    Biosystems; 2010 May; 100(2):150-7. PubMed ID: 20226228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics.
    Nikerel IE; van Winden WA; van Gulik WM; Heijnen JJ
    BMC Bioinformatics; 2006 Dec; 7():540. PubMed ID: 17184531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes.
    Smallbone K; Messiha HL; Carroll KM; Winder CL; Malys N; Dunn WB; Murabito E; Swainston N; Dada JO; Khan F; Pir P; Simeonidis E; Spasić I; Wishart J; Weichart D; Hayes NW; Jameson D; Broomhead DS; Oliver SG; Gaskell SJ; McCarthy JE; Paton NW; Westerhoff HV; Kell DB; Mendes P
    FEBS Lett; 2013 Sep; 587(17):2832-41. PubMed ID: 23831062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic modeling as a tool to integrate multilevel dynamic experimental data.
    Mogilevskaya E; Bagrova N; Plyusnina T; Gizzatkulov N; Metelkin E; Goryacheva E; Smirnov S; Kosinsky Y; Dorodnov A; Peskov K; Karelina T; Goryanin I; Demin O
    Methods Mol Biol; 2009; 563():197-218. PubMed ID: 19597787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic modeling of the central carbon metabolism of Escherichia coli.
    Chassagnole C; Noisommit-Rizzi N; Schmid JW; Mauch K; Reuss M
    Biotechnol Bioeng; 2002 Jul; 79(1):53-73. PubMed ID: 17590932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.