BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 17512049)

  • 1. The mathematical formulation of a generalized Hooke's law for blood vessels.
    Zhang W; Wang C; Kassab GS
    Biomaterials; 2007 Aug; 28(24):3569-78. PubMed ID: 17512049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shear modulus of porcine coronary artery in reference to a new strain measure.
    Zhang W; Lu X; Kassab GS
    Biomaterials; 2007 Nov; 28(31):4733-8. PubMed ID: 17669488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A linearized and incompressible constitutive model for arteries.
    Liu Y; Zhang W; Wang C; Kassab GS
    J Theor Biol; 2011 Oct; 286(1):85-91. PubMed ID: 21605567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bilinear stress-strain relationship for arteries.
    Zhang W; Kassab GS
    Biomaterials; 2007 Feb; 28(6):1307-15. PubMed ID: 17112583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The validation of a generalized Hooke's law for coronary arteries.
    Wang C; Zhang W; Kassab GS
    Am J Physiol Heart Circ Physiol; 2008 Jan; 294(1):H66-73. PubMed ID: 17933971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model for the nonlinear elastic response of large arteries.
    Elad D; Foux A; Kivity Y
    J Biomech Eng; 1988 Aug; 110(3):185-9. PubMed ID: 3172737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does Hooke's law work in helical nanosprings?
    Ben S; Zhao J; Rabczuk T
    Phys Chem Chem Phys; 2015 Aug; 17(32):20990-7. PubMed ID: 26214003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local elasticity map and plasticity in a model Lennard-Jones glass.
    Tsamados M; Tanguy A; Goldenberg C; Barrat JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026112. PubMed ID: 19792205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new three-dimensional exponential material model of the coronary arterial wall to include shear stress due to torsion.
    Van Epps JS; Vorp DA
    J Biomech Eng; 2008 Oct; 130(5):051001. PubMed ID: 19045508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bimodular theory for finite deformations: Comparison of orthotropic second-order and exponential stress constitutive equations for articular cartilage.
    Klisch SM
    Biomech Model Mechanobiol; 2006 Jun; 5(2-3):90-101. PubMed ID: 16598492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The invalidity of the Laplace law for biological vessels and of estimating elastic modulus from total stress vs. strain: a new practical method.
    Costanzo F; Brasseur JG
    Math Med Biol; 2015 Mar; 32(1):1-37. PubMed ID: 24071531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The degree of nonlinearity and anisotropy of blood vessel elasticity.
    Zhou J; Fung YC
    Proc Natl Acad Sci U S A; 1997 Dec; 94(26):14255-60. PubMed ID: 9405599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The anisotropic Hooke's law for cancellous bone and wood.
    Yang G; Kabel J; van Rietbergen B; Odgaard A; Huiskes R; Cowin SC
    J Elast; 1998-9; 53(2):125-46. PubMed ID: 11543211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breakdown of Hooke's law at the nanoscale - 2D material-based nanosprings.
    Zhan H; Zhang G; Yang C; Gu Y
    Nanoscale; 2018 Oct; 10(40):18961-18968. PubMed ID: 30209479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How should we measure and report elasticity in aortic tissue?
    Khanafer K; Schlicht MS; Berguer R
    Eur J Vasc Endovasc Surg; 2013 Apr; 45(4):332-9. PubMed ID: 23403219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the third- and fourth-order constants of incompressible isotropic elasticity.
    Destrade M; Ogden RW
    J Acoust Soc Am; 2010 Dec; 128(6):3334-43. PubMed ID: 21218867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-dimensional elastic plastic damage constitutive law for bone tissue.
    Garcia D; Zysset PK; Charlebois M; Curnier A
    Biomech Model Mechanobiol; 2009 Apr; 8(2):149-65. PubMed ID: 18398628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isogeometric Kirchhoff-Love shell formulations for biological membranes.
    Tepole AB; Kabaria H; Bletzinger KU; Kuhl E
    Comput Methods Appl Mech Eng; 2015 Aug; 293():328-347. PubMed ID: 26251556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constitutive models for a poly(e-caprolactone) scaffold.
    Quinn TP; Oreskovic TL; McCowan CN; Washburn NR
    Biomed Sci Instrum; 2004; 40():249-54. PubMed ID: 15133966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A unifying fractional wave equation for compressional and shear waves.
    Holm S; Sinkus R
    J Acoust Soc Am; 2010 Jan; 127(1):542-59. PubMed ID: 20058999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.