BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 17512457)

  • 1. Preeclampsia inactivates glucose-6-phosphate dehydrogenase and impairs the redox status of erythrocytes and fetal endothelial cells.
    Afzal-Ahmed I; Mann GE; Shennan AH; Poston L; Naftalin RJ
    Free Radic Biol Med; 2007 Jun; 42(12):1781-90. PubMed ID: 17512457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive study of oxidative stress and antioxidant status in preeclampsia and normal pregnancy.
    Llurba E; Gratacós E; Martín-Gallán P; Cabero L; Dominguez C
    Free Radic Biol Med; 2004 Aug; 37(4):557-70. PubMed ID: 15256227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neutrophil-derived reactive oxygen species can modulate neutrophil adhesion to endothelial cells in preeclampsia.
    Tsukimori K; Tsushima A; Fukushima K; Nakano H; Wake N
    Am J Hypertens; 2008 May; 21(5):587-91. PubMed ID: 18437152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative stress and changes in antioxidative defense system in erythrocytes of preeclampsia in women.
    Dordević NZ; Babić GM; Marković SD; Ognjanović BI; Stajn AS; Zikić RV; Saicić ZS
    Reprod Toxicol; 2008 Feb; 25(2):213-8. PubMed ID: 18191537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose-6-phosphate dehydrogenase overexpression decreases endothelial cell oxidant stress and increases bioavailable nitric oxide.
    Leopold JA; Zhang YY; Scribner AW; Stanton RC; Loscalzo J
    Arterioscler Thromb Vasc Biol; 2003 Mar; 23(3):411-7. PubMed ID: 12615686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose-6-phosphate dehydrogenase modulates cytosolic redox status and contractile phenotype in adult cardiomyocytes.
    Jain M; Brenner DA; Cui L; Lim CC; Wang B; Pimentel DR; Koh S; Sawyer DB; Leopold JA; Handy DE; Loscalzo J; Apstein CS; Liao R
    Circ Res; 2003 Jul; 93(2):e9-16. PubMed ID: 12829617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Susceptibility of red blood cell lipids to in vitro oxidation and antioxidant status in preeclampsia.
    Dirican M; Safak O; Uncu G; Sarandöl E
    Eur J Obstet Gynecol Reprod Biol; 2008 Oct; 140(2):158-64. PubMed ID: 16914260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NADPH oxidase 2-derived superoxide downregulates endothelial KCa3.1 in preeclampsia.
    Choi S; Kim JA; Na HY; Kim JE; Park S; Han KH; Kim YJ; Suh SH
    Free Radic Biol Med; 2013 Apr; 57():10-21. PubMed ID: 23261940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of serum from preeclamptic women on prostacyclin production by human endothelial cells.
    Winn HN; Todd HM; Amon E; al-Malt A; Molnár M; Hertelendy F
    J Matern Fetal Med; 1997; 6(5):249-53. PubMed ID: 9360180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose 6 phosphate dehydrogenase (G6PD) deficiency is a possible risk factor for the development of preeclampsia.
    Abdulhadi NH
    Med Hypotheses; 2004; 62(5):780-2. PubMed ID: 15082106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of reactive oxygen species by neutrophils and endothelial cell injury in normal and preeclamptic pregnancies.
    Tsukimori K; Fukushima K; Tsushima A; Nakano H
    Hypertension; 2005 Oct; 46(4):696-700. PubMed ID: 16172429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concentrations of thioredoxin, a redox-regulating protein, in umbilical cord blood and breast milk.
    Todoroki Y; Tsukahara H; Ohshima Y; Shukunami K; Nishijima K; Kotsuji F; Hata A; Kasuga K; Sekine K; Nakamura H; Yodoi J; Mayumi M
    Free Radic Res; 2005 Mar; 39(3):291-7. PubMed ID: 15788233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dyslipidemia, iron, and oxidative stress in preeclampsia: assessment of maternal and feto-placental interactions.
    Hubel CA
    Semin Reprod Endocrinol; 1998; 16(1):75-92. PubMed ID: 9654610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchrony of G6PD activity and RBC fragility under oxidative stress exerted at normal and G6PD deficiency.
    Abboud MM; Al-Awaida W
    Clin Biochem; 2010 Mar; 43(4-5):455-60. PubMed ID: 19941843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased circulating lipid peroxides in severe preeclampsia activate NF-kappaB and upregulate ICAM-1 in vascular endothelial cells.
    Takacs P; Kauma SW; Sholley MM; Walsh SW; Dinsmoor MJ; Green K
    FASEB J; 2001 Feb; 15(2):279-81. PubMed ID: 11156936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vasoactive mediator release by fetal endothelial cells in intrauterine growth restriction and preeclampsia.
    Parra MC; Lees C; Mann GE; Pearson JD; Nicolaides KH
    Am J Obstet Gynecol; 2001 Feb; 184(3):497-502. PubMed ID: 11228509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative challenge and glucose-6-phosphate dehydrogenase activity of preterm and term neonatal red blood cells.
    Ko CH; Wong RP; Ng PC; Li K; Chui KM; Yuen PM; Fok TF
    Neonatology; 2009; 96(2):96-101. PubMed ID: 19258737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative stress and antioxidant status in fetal circulation in preeclampsia.
    Braekke K; Harsem NK; Staff AC
    Pediatr Res; 2006 Nov; 60(5):560-4. PubMed ID: 16988193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased leukocyte adhesion to vascular endothelium in preeclampsia is inhibited by antioxidants.
    Ryu S; Huppmann AR; Sambangi N; Takacs P; Kauma SW
    Am J Obstet Gynecol; 2007 Apr; 196(4):400.e1-7; discussion 400.e7-8. PubMed ID: 17403435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased levels of cell-free hemoglobin, oxidation markers, and the antioxidative heme scavenger alpha(1)-microglobulin in preeclampsia.
    Olsson MG; Centlow M; Rutardóttir S; Stenfors I; Larsson J; Hosseini-Maaf B; Olsson ML; Hansson SR; Akerström B
    Free Radic Biol Med; 2010 Jan; 48(2):284-91. PubMed ID: 19879940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.