BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 17512500)

  • 21. The orphan nuclear receptor Rev-erbalpha: a transcriptional link between circadian rhythmicity and cardiometabolic disease.
    Fontaine C; Staels B
    Curr Opin Lipidol; 2007 Apr; 18(2):141-6. PubMed ID: 17353661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Non-photic phase shifting of the circadian clock: role of the extracellular signal-responsive kinases I/II/mitogen-activated protein kinase pathway.
    Antle MC; Tse F; Koke SJ; Sterniczuk R; Hagel K
    Eur J Neurosci; 2008 Dec; 28(12):2511-8. PubMed ID: 19087176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Obesity alters circadian expressions of molecular clock genes in the brainstem.
    Kaneko K; Yamada T; Tsukita S; Takahashi K; Ishigaki Y; Oka Y; Katagiri H
    Brain Res; 2009 Mar; 1263():58-68. PubMed ID: 19401184
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dominant role of GABAB2 and Gbetagamma for GABAB receptor-mediated-ERK1/2/CREB pathway in cerebellar neurons.
    Tu H; Rondard P; Xu C; Bertaso F; Cao F; Zhang X; Pin JP; Liu J
    Cell Signal; 2007 Sep; 19(9):1996-2002. PubMed ID: 17582742
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An altered fibronectin matrix induces anoikis of human squamous cell carcinoma cells by suppressing integrin alpha v levels and phosphorylation of FAK and ERK.
    Kamarajan P; Kapila YL
    Apoptosis; 2007 Dec; 12(12):2221-31. PubMed ID: 17879163
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retinoic acid receptor-related orphan receptor alpha as a therapeutic target in the treatment of dyslipidemia and atherosclerosis.
    Jakel H; Fruchart-Najib J; Fruchart JC
    Drug News Perspect; 2006 Mar; 19(2):91-7. PubMed ID: 16628264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptional regulation of apolipoprotein A5 gene expression by the nuclear receptor RORalpha.
    Genoux A; Dehondt H; Helleboid-Chapman A; Duhem C; Hum DW; Martin G; Pennacchio LA; Staels B; Fruchart-Najib J; Fruchart JC
    Arterioscler Thromb Vasc Biol; 2005 Jun; 25(6):1186-92. PubMed ID: 15790933
    [TBL] [Abstract][Full Text] [Related]  

  • 28. C-terminal hemocyanin from hemocytes of Penaeus vannamei interacts with ERK1/2 and undergoes serine phosphorylation.
    Havanapan PO; Kanlaya R; Bourchookarn A; Krittanai C; Thongboonkerd V
    J Proteome Res; 2009 May; 8(5):2476-83. PubMed ID: 19284748
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The C-terminal domain of Mnk1a plays a dual role in tightly regulating its activity.
    Goto S; Yao Z; Proud CG
    Biochem J; 2009 Sep; 423(2):279-90. PubMed ID: 19650764
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Betagamma subunits of G(i/o) suppress EGF-induced ERK5 phosphorylation, whereas ERK1/2 phosphorylation is enhanced.
    Obara Y; Okano Y; Ono S; Yamauchi A; Hoshino T; Kurose H; Nakahata N
    Cell Signal; 2008 Jul; 20(7):1275-83. PubMed ID: 18407464
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extracellular signal-regulated kinases (ERK) and protein kinase C (PKC) activities are involved in the modulation of Nur77 and Nor-1 expression by dopaminergic drugs.
    Bourhis E; Maheux J; Rouillard C; Lévesque D
    J Neurochem; 2008 Jul; 106(2):875-88. PubMed ID: 18466322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nurr1 is phosphorylated by ERK2 in vitro and its phosphorylation upregulates tyrosine hydroxylase expression in SH-SY5Y cells.
    Zhang T; Jia N; Fei E; Wang P; Liao Z; Ding L; Yan M; Nukina N; Zhou J; Wang G
    Neurosci Lett; 2007 Aug; 423(2):118-22. PubMed ID: 17681692
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The cooked meat carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine activates the extracellular signal regulated kinase mitogen-activated protein kinase pathway.
    Creton SK; Zhu H; Gooderham NJ
    Cancer Res; 2007 Dec; 67(23):11455-62. PubMed ID: 18056474
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RORalpha-mediated Purkinje cell development determines disease severity in adult SCA1 mice.
    Serra HG; Duvick L; Zu T; Carlson K; Stevens S; Jorgensen N; Lysholm A; Burright E; Zoghbi HY; Clark HB; Andresen JM; Orr HT
    Cell; 2006 Nov; 127(4):697-708. PubMed ID: 17110330
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neurodegeneration: a case of arrested development?
    La Spada AR
    Cell; 2006 Nov; 127(4):669-71. PubMed ID: 17110325
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression and regulation of the nuclear receptor RORalpha in human vascular cells.
    Besnard S; Heymes C; Merval R; Rodriguez M; Galizzi JP; Boutin JA; Mariani J; Tedgui A
    FEBS Lett; 2002 Jan; 511(1-3):36-40. PubMed ID: 11821045
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ROR alpha in genetic control of cerebellum development: 50 staggering years.
    Gold DA; Gent PM; Hamilton BA
    Brain Res; 2007 Apr; 1140():19-25. PubMed ID: 16427031
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isoform-specific inhibition of ROR alpha-mediated transcriptional activation by human FOXP3.
    Du J; Huang C; Zhou B; Ziegler SF
    J Immunol; 2008 Apr; 180(7):4785-92. PubMed ID: 18354202
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RORalpha: an orphan nuclear receptor on a high-cholesterol diet.
    Willson TM
    Structure; 2002 Dec; 10(12):1605-6. PubMed ID: 12467566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structure of the human RORalpha Ligand binding domain in complex with cholesterol sulfate at 2.2 A.
    Kallen J; Schlaeppi JM; Bitsch F; Delhon I; Fournier B
    J Biol Chem; 2004 Apr; 279(14):14033-8. PubMed ID: 14722075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.