These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 1751256)

  • 1. Using magnostrictive metal as a pump for biomedical application.
    Phillips SJ; Thorton K; Barker L; Mina M; Aris M; Bedore N; Grant S; Zeff RH
    ASAIO Trans; 1991; 37(3):M509-10. PubMed ID: 1751256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The newly designed univalved artificial heart.
    Nitta S; Hashimoto H; Sonobe T; Katahira Y; Yambe T; Naganuma S; Tanaka M; Sato N; Miura M; Mohri H
    ASAIO Trans; 1991; 37(3):M240-1. PubMed ID: 1751128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of magnetic fluids on the efficiency of an electromagnetic actuator prototype.
    Ferrari G; De Lazzari C; Mimmo R; Tosti G; Ambrosi D
    Int J Artif Organs; 1991 Jan; 14(1):33-42. PubMed ID: 2032747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current status of the gyro centrifugal blood pump--development of the permanently implantable centrifugal blood pump as a biventricular assist device (NEDO project).
    Nosé Y; Furukawa K
    Artif Organs; 2004 Oct; 28(10):953-8. PubMed ID: 15385004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rotacor: a new rotary blood pump.
    Margreiter R; Schwab W; Klima G; Koller J; Baum M; Dietrich H; Hager J; Königsrainer A
    ASAIO Trans; 1990; 36(3):M281-4. PubMed ID: 2252678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An implantable power source for an artificial heart or left ventricular assist device.
    Spitzer D
    Trans Am Soc Artif Intern Organs; 1985; 31():193-5. PubMed ID: 3837443
    [No Abstract]   [Full Text] [Related]  

  • 7. Development and evaluation of totally implantable ventricular assist system using a vibrating flow pump and transcutaneous energy transmission system with amorphous fibers.
    Yambe T; Hashimoto H; Kobayashi S; Sonobe T; Naganuma S; Nanka SS; Matsuki H; Yoshizawa M; Tabayashi K; Takayasu H; Takeda H; Nitta S
    Heart Vessels; 1997; Suppl 12():41-3. PubMed ID: 9476541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow visualization techniques in a mock ventricle supported by a nonpulsatile left ventricular assist device.
    Khalil HA; Metcalfe RW; Kleis SJ; Lee EL; Gilbert NL; Kerr DT; Frazier OH; Cohn WE
    ASAIO J; 2009; 55(4):323-7. PubMed ID: 19512887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A superconductive electromagnetic pump without any mechanical moving parts.
    Qian KX; Wang SS; Chu SH
    ASAIO J; 1993; 39(3):M649-53. PubMed ID: 8268618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Another way of pumping blood with a rotary but noncentrifugal pump for an artificial heart.
    Monties JR; Mesana T; Havlik P; Trinkl J; Demunck JL; Candelon B
    ASAIO Trans; 1990; 36(3):M258-60. PubMed ID: 2252672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The valvo-pump. An axial, nonpulsatile blood pump.
    Mitamura Y; Yozu R; Tanaka T; Yamazaki K
    ASAIO Trans; 1991; 37(3):M510-2. PubMed ID: 1751257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a prototype magnetically suspended rotor ventricular assist device.
    Bearnson GB; Maslen EH; Olsen DB; Allaire PE; Khanwilkar PS; Long JW; Kim HC
    ASAIO J; 1996; 42(4):275-81. PubMed ID: 8828784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A portable pneumatic driving unit for a left ventricular assist device.
    Kabei N; Shimemura E; Sakurai Y; Tsuchiya K
    Int J Artif Organs; 1988 May; 11(3):186-90. PubMed ID: 3403056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of unifying transcutaneous transformer for transmission of energy and information.
    Tamura N; Yamamoto T; Aoki H; Koshiji K; Homma A; Tatsumi E; Taenaka Y
    J Artif Organs; 2009; 12(2):138-40. PubMed ID: 19536632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implantable physiologic controller for left ventricular assist devices with telemetry capability.
    Asgari SS; Bonde P
    J Thorac Cardiovasc Surg; 2014 Jan; 147(1):192-202. PubMed ID: 24176267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Left ventricular assist using a jet pump.
    Rhee K; Blackshear PL
    ASAIO Trans; 1990; 36(3):M515-8. PubMed ID: 2252738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of a rotary pulsatile cardiac assist pump driven by an electric motor without a pressure sensor to avoid collapse of the pump inlet.
    Trinkl J; Havlik P; Mesana T; Mitsui N; Morita S; Demunck JL; Tourres JL; Monties JR
    ASAIO J; 1993; 39(3):M237-41. PubMed ID: 8268535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using hybrid magnetic bearings to completely suspend the impeller of a ventricular assist device.
    Khanwilkar P; Olsen D; Bearnson G; Allaire P; Maslen E; Flack R; Long J
    Artif Organs; 1996 Jun; 20(6):597-604. PubMed ID: 8817963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement in magnetic field immunity of externally-coupled transcutaneous energy transmission system for a totally implantable artificial heart.
    Yamamoto T; Koshiji K; Homma A; Tatsumi E; Taenaka Y
    J Artif Organs; 2008; 11(4):238-40. PubMed ID: 19184291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ambulatory, intermediate term left ventricular assist device.
    Poirier VL; Sherman CW; Clay WC; Graham TR; Withington PS; Marrinan MT; Lewis CT
    ASAIO Trans; 1989; 35(3):452-5. PubMed ID: 2597504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.