These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 1751261)

  • 21. Custodiol-N, the novel cardioplegic solution reduces ischemia/reperfusion injury after cardiopulmonary bypass.
    Veres G; Radovits T; Merkely B; Karck M; Szabó G
    J Cardiothorac Surg; 2015 Feb; 10():27. PubMed ID: 25890005
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ventricular actuation improves systolic and diastolic myocardial function in the small failing heart.
    Anstadt MP; Budharaju S; Darner RJ; Schmitt BA; Prochaska LJ; Pothoulakis AJ; Portner PM
    Ann Thorac Surg; 2009 Dec; 88(6):1982-8; discussion 1988. PubMed ID: 19932272
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Poly(ADP-ribose) polymerase inhibition improves postischemic myocardial function after cardioplegia-cardiopulmonary bypass.
    Khan TA; Ruel M; Bianchi C; Voisine P; Komjáti K; Szabo C; Sellke FW
    J Am Coll Surg; 2003 Aug; 197(2):270-7. PubMed ID: 12892811
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aortic and mitral valve surgery on the beating heart is lowering cardiopulmonary bypass and aortic cross clamp time.
    Gersak B; Sutlic Z
    Heart Surg Forum; 2002; 5(2):182-6. PubMed ID: 12125670
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cardiopulmonary bypass in a model of acute myocardial infarction and cardiac arrest.
    Angelos MG; Gaddis M; Gaddis G; Leasure JE
    Ann Emerg Med; 1990 Aug; 19(8):874-80. PubMed ID: 2372169
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of thrombin during reperfusion improves immediate postischemic myocardial function and modulates apoptosis in a porcine model of cardiopulmonary bypass.
    Jormalainen M; Vento AE; Lukkarinen H; Kääpä P; Kytö V; Lauronen J; Paavonen T; Suojaranta-Ylinen R; Petäjä J
    J Cardiothorac Vasc Anesth; 2007 Apr; 21(2):224-31. PubMed ID: 17418736
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of N-acetylcysteine in attenuating ischemic reperfusion injury in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass.
    Prabhu A; Sujatha DI; Kanagarajan N; Vijayalakshmi MA; Ninan B
    Ann Vasc Surg; 2009; 23(5):645-51. PubMed ID: 19467834
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phospholipid alterations in the brain and heart in a rat model of asphyxia-induced cardiac arrest and cardiopulmonary bypass resuscitation.
    Kim J; Lampe JW; Yin T; Shinozaki K; Becker LB
    Mol Cell Biochem; 2015 Oct; 408(1-2):273-81. PubMed ID: 26160279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acute regional myocardial ischemia and recovery after cardiopulmonary bypass: effects of intensity of antecedent ischemia.
    Leone BJ; Huggins CP; Johns J; McRae RL; Smith B; White W
    J Card Surg; 1995 Jul; 10(4 Suppl):396-9. PubMed ID: 7579833
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extracorporeal versus conventional cardiopulmonary resuscitation after ventricular fibrillation cardiac arrest in rats: a feasibility trial.
    Janata A; Drabek T; Magnet IA; Stezoski JP; Janesko-Feldman K; Popp E; Garman RH; Tisherman SA; Kochanek PM
    Crit Care Med; 2013 Sep; 41(9):e211-22. PubMed ID: 23666097
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long-term morphologic and hemodynamic evaluation of the left ventricle after cardiopulmonary bypass. A comparison of normothermic anoxic arrest, coronary artery perfusion, and profound topical cardiac hypothermia.
    Brody WR; Reitz BA; Andrews MJ; Roberts WC; Michaelis LL
    J Thorac Cardiovasc Surg; 1975 Dec; 70(6):1073-87. PubMed ID: 1186284
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hyperoxemic reperfusion after prolonged cardiac arrest in a rat cardiopulmonary bypass resuscitation model.
    Yeh ST; Aune SE; Wilgus TA; Parent AE; Angelos MG
    Resuscitation; 2013 Jan; 84(1):114-20. PubMed ID: 22982155
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The protective effects of preconditioning decline in aged patients undergoing coronary artery bypass grafting.
    Wu ZK; Pehkonen E; Laurikka J; Kaukinen L; Honkonen EL; Kaukinen S; Laippala P; Tarkka MR
    J Thorac Cardiovasc Surg; 2001 Nov; 122(5):972-8. PubMed ID: 11689803
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predictive factors of hemodynamic collapse after coronary artery bypass grafting: a case-control study.
    Karhunen JP; Sihvo EI; Suojaranta-Ylinen RT; Rämö OJ; Salminen US
    J Cardiothorac Vasc Anesth; 2006 Apr; 20(2):143-8. PubMed ID: 16616651
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interpretation of cardiac physiology from pressure waveform analysis: extra hearts: Part III.
    Kern MJ; Deligonul U
    Cathet Cardiovasc Diagn; 1991 May; 23(1):50-3. PubMed ID: 1863963
    [No Abstract]   [Full Text] [Related]  

  • 36. Survival and neurological outcomes after nasopharyngeal cooling or peripheral vein cold saline infusion initiated during cardiopulmonary resuscitation in a porcine model of prolonged cardiac arrest.
    Yu T; Barbut D; Ristagno G; Cho JH; Sun S; Li Y; Weil MH; Tang W
    Crit Care Med; 2010 Mar; 38(3):916-21. PubMed ID: 20081534
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bypass conduit vessel wall biology substantially influences downstream myocardial contractile response to injury from ischemia and reperfusion.
    Robinson BL; Morita T; Fujita K; Chow M; Schaff HV; Morris JJ
    J Thorac Cardiovasc Surg; 1996 Jan; 111(1):62-73. PubMed ID: 8551790
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A combination of metabolic strategies plus cardiopulmonary bypass improves short-term resuscitation from prolonged lethal cardiac arrest.
    Boller M; Jung SK; Odegaard S; Muehlmatt A; Katz JM; Becker LB
    Resuscitation; 2011 Dec; 82 Suppl 2():S27-34. PubMed ID: 22208174
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of levosimendan on hemodynamics, local cerebral blood flow, neuronal injury, and neuroinflammation after asphyctic cardiac arrest in rats.
    Kelm RF; Wagenführer J; Bauer H; Schmidtmann I; Engelhard K; Noppens RR
    Crit Care Med; 2014 Jun; 42(6):e410-9. PubMed ID: 24633188
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of Oxygen Concentrations on Postresuscitation Myocardial Oxidative Stress and Myocardial Function in a Rat Model of Cardiopulmonary Resuscitation.
    Zhao S; Qian J; Wang J; Gong P; Yang Z; Cahoon J; Wu X; Duggal N; Lin C; Tang W
    Crit Care Med; 2015 Dec; 43(12):e560-6. PubMed ID: 26491859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.