BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 17512626)

  • 1. Highly efficient cationic hydroxyethylated cholesterol-based nanoparticle-mediated gene transfer in vivo and in vitro in prostate carcinoma PC-3 cells.
    Hattori Y; Ding WX; Maitani Y
    J Control Release; 2007 Jul; 120(1-2):122-30. PubMed ID: 17512626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folate-linked lipid-based nanoparticles for synthetic siRNA delivery in KB tumor xenografts.
    Yoshizawa T; Hattori Y; Hakoshima M; Koga K; Maitani Y
    Eur J Pharm Biopharm; 2008 Nov; 70(3):718-25. PubMed ID: 18647651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NaCl improves siRNA delivery mediated by nanoparticles of hydroxyethylated cationic cholesterol with amido-linker.
    Hattori Y; Hagiwara A; Ding W; Maitani Y
    Bioorg Med Chem Lett; 2008 Oct; 18(19):5228-32. PubMed ID: 18783946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NaCl induced high cationic hydroxyethylated cholesterol-based nanoparticle-mediated synthetic small interfering RNA transfer into prostate carcinoma PC-3 cells.
    Hattori Y; Yoshizawa T; Koga K; Maitani Y
    Biol Pharm Bull; 2008 Dec; 31(12):2294-301. PubMed ID: 19043216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxyethylated cationic cholesterol derivatives in liposome vectors promote gene expression in the lung.
    Ding W; Hattori Y; Higashiyama K; Maitani Y
    Int J Pharm; 2008 Apr; 354(1-2):196-203. PubMed ID: 18155371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. siRNA delivery into tumor cells by lipid-based nanoparticles composed of hydroxyethylated cholesteryl triamine.
    Hattori Y; Nakamura T; Ohno H; Fujii N; Maitani Y
    Int J Pharm; 2013 Feb; 443(1-2):221-9. PubMed ID: 23279939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of a star-shaped copolymer as a vector for FGF receptor-mediated gene delivery in vitro and in vivo.
    Li D; Ping Y; Xu F; Yu H; Pan H; Huang H; Wang Q; Tang G; Li J
    Biomacromolecules; 2010 Sep; 11(9):2221-9. PubMed ID: 20704346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel cationic cardiolipin analogue-based liposome for efficient DNA and small interfering RNA delivery in vitro and in vivo.
    Chien PY; Wang J; Carbonaro D; Lei S; Miller B; Sheikh S; Ali SM; Ahmad MU; Ahmad I
    Cancer Gene Ther; 2005 Mar; 12(3):321-8. PubMed ID: 15578064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced in vitro DNA transfection efficiency by novel folate-linked nanoparticles in human prostate cancer and oral cancer.
    Hattori Y; Maitani Y
    J Control Release; 2004 May; 97(1):173-83. PubMed ID: 15147814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel cationic solid lipid nanoparticles enhanced p53 gene transfer to lung cancer cells.
    Choi SH; Jin SE; Lee MK; Lim SJ; Park JS; Kim BG; Ahn WS; Kim CK
    Eur J Pharm Biopharm; 2008 Mar; 68(3):545-54. PubMed ID: 17881199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. siRNA delivery into tumor cells by cationic cholesterol derivative-based nanoparticles and liposomes.
    Hattori Y; Hara E; Shingu Y; Minamiguchi D; Nakamura A; Arai S; Ohno H; Kawano K; Fujii N; Yonemochi E
    Biol Pharm Bull; 2015; 38(1):30-8. PubMed ID: 25744455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversibly stable thiopolyplexes for intracellular delivery of genes.
    Cavallaro G; Campisi M; Licciardi M; Ogris M; Giammona G
    J Control Release; 2006 Oct; 115(3):322-34. PubMed ID: 17028038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium carbonate nanoparticle delivering vascular endothelial growth factor-C siRNA effectively inhibits lymphangiogenesis and growth of gastric cancer in vivo.
    He XW; Liu T; Chen YX; Cheng DJ; Li XR; Xiao Y; Feng YL
    Cancer Gene Ther; 2008 Mar; 15(3):193-202. PubMed ID: 18202713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chitosan nanoparticle as gene therapy vector via gastrointestinal mucosa administration: results of an in vitro and in vivo study.
    Zheng F; Shi XW; Yang GF; Gong LL; Yuan HY; Cui YJ; Wang Y; Du YM; Li Y
    Life Sci; 2007 Jan; 80(4):388-96. PubMed ID: 17074366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-molecular-weight polyethylenimine enhanced gene transfer by cationic cholesterol-based nanoparticle vector.
    Hattori Y; Maitani Y
    Biol Pharm Bull; 2007 Sep; 30(9):1773-8. PubMed ID: 17827738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sterically stabilized immunolipoplex for systemic administration of a therapeutic gene.
    Yu W; Pirollo KF; Rait A; Yu B; Xiang LM; Huang WQ; Zhou Q; Ertem G; Chang EH
    Gene Ther; 2004 Oct; 11(19):1434-40. PubMed ID: 15229629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel PEGylation of chitosan nanoparticles for gene delivery.
    Zhang Y; Chen J; Zhang Y; Pan Y; Zhao J; Ren L; Liao M; Hu Z; Kong L; Wang J
    Biotechnol Appl Biochem; 2007 Apr; 46(Pt 4):197-204. PubMed ID: 17147512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1,4-Butanediol diglycidyl ether (BDE)-crosslinked PEI-g-imidazole nanoparticles as nucleic acid-carriers in vitro and in vivo.
    Goyal R; Bansal R; Tyagi S; Shukla Y; Kumar P; Gupta KC
    Mol Biosyst; 2011 Jun; 7(6):2055-65. PubMed ID: 21505659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanosized bioceramic particles could function as efficient gene delivery vehicles with target specificity for the spleen.
    Tan K; Cheang P; Ho IA; Lam PY; Hui KM
    Gene Ther; 2007 May; 14(10):828-35. PubMed ID: 17344903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of chitosan as a condensing agent to enhance emulsion-mediated gene transfer.
    Lee MK; Chun SK; Choi WJ; Kim JK; Choi SH; Kim A; Oungbho K; Park JS; Ahn WS; Kim CK
    Biomaterials; 2005 May; 26(14):2147-56. PubMed ID: 15576190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.