BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 17512801)

  • 1. CLIP proteases and Plasmodium melanization in Anopheles gambiae.
    Barillas-Mury C
    Trends Parasitol; 2007 Jul; 23(7):297-9. PubMed ID: 17512801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The serine protease homolog CLIPA14 modulates the intensity of the immune response in the mosquito
    Nakhleh J; Christophides GK; Osta MA
    J Biol Chem; 2017 Nov; 292(44):18217-18226. PubMed ID: 28928218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The CLIP-domain serine protease CLIPC9 regulates melanization downstream of SPCLIP1, CLIPA8, and CLIPA28 in the malaria vector Anopheles gambiae.
    Sousa GL; Bishnoi R; Baxter RHG; Povelones M
    PLoS Pathog; 2020 Oct; 16(10):e1008985. PubMed ID: 33045027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene silencing of serine proteases affects melanization of Sephadex beads in Anopheles gambiae.
    Paskewitz SM; Andreev O; Shi L
    Insect Biochem Mol Biol; 2006 Sep; 36(9):701-11. PubMed ID: 16935219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A genetic module regulates the melanization response of Anopheles to Plasmodium.
    Volz J; Müller HM; Zdanowicz A; Kafatos FC; Osta MA
    Cell Microbiol; 2006 Sep; 8(9):1392-405. PubMed ID: 16922859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CLIPB8 is part of the prophenoloxidase activation system in Anopheles gambiae mosquitoes.
    Zhang X; An C; Sprigg K; Michel K
    Insect Biochem Mol Biol; 2016 Apr; 71():106-15. PubMed ID: 26926112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased melanizing activity in Anopheles gambiae does not affect development of Plasmodium falciparum.
    Michel K; Suwanchaichinda C; Morlais I; Lambrechts L; Cohuet A; Awono-Ambene PH; Simard F; Fontenille D; Kanost MR; Kafatos FC
    Proc Natl Acad Sci U S A; 2006 Nov; 103(45):16858-63. PubMed ID: 17065316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mosquito melanization response requires hierarchical activation of non-catalytic clip domain serine protease homologs.
    El Moussawi L; Nakhleh J; Kamareddine L; Osta MA
    PLoS Pathog; 2019 Nov; 15(11):e1008194. PubMed ID: 31765430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse genetics analysis of antiparasitic responses in the malaria vector, Anopheles gambiae.
    Blandin SA; Levashina EA
    Methods Mol Biol; 2008; 415():365-77. PubMed ID: 18370165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CLIPB10 is a Terminal Protease in the Regulatory Network That Controls Melanization in the African Malaria Mosquito
    Zhang X; Li M; El Moussawi L; Saab S; Zhang S; Osta MA; Michel K
    Front Cell Infect Microbiol; 2020; 10():585986. PubMed ID: 33520733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Malaria parasites in mosquitoes: laboratory models, evolutionary temptation and the real world.
    Boëte C
    Trends Parasitol; 2005 Oct; 21(10):445-7. PubMed ID: 16099724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The roles of two clip domain serine proteases in innate immune responses of the malaria vector Anopheles gambiae.
    Volz J; Osta MA; Kafatos FC; Müller HM
    J Biol Chem; 2005 Dec; 280(48):40161-8. PubMed ID: 16188883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two serine proteases from Anopheles dirus haemocytes exhibit changes in transcript abundance after infection of an incompatible rodent malaria parasite, Plasmodium yoelii.
    Xu W; Huang FS; Hao HX; Duan JH; Qiu ZW
    Vet Parasitol; 2006 Jun; 139(1-3):93-101. PubMed ID: 16567047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmodium yoelii: contribution of oocysts melanization to natural refractoriness in Anopheles dirus.
    Wen-Yue X; Jian Z; Tao-Li Z; Fu-Sheng H; Jian-Hua D; Ying W; Zhong-Wen Q; Li-Sha X
    Exp Parasitol; 2007 Aug; 116(4):433-9. PubMed ID: 17416360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of infection by Plasmodium falciparum on the melanization immune response of Anopheles gambiae.
    Lambrechts L; Morlais I; Awono-Ambene PH; Cohuet A; Simard F; Jacques JC; Bourgouin C; Koella JC
    Am J Trop Med Hyg; 2007 Mar; 76(3):475-80. PubMed ID: 17360870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Gram-negative bacteria-binding protein gene family: its role in the innate immune system of anopheles gambiae and in anti-Plasmodium defence.
    Warr E; Das S; Dong Y; Dimopoulos G
    Insect Mol Biol; 2008 Feb; 17(1):39-51. PubMed ID: 18237283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anopheles gambiae immune responses to Sephadex beads: involvement of anti-Plasmodium factors in regulating melanization.
    Warr E; Lambrechts L; Koella JC; Bourgouin C; Dimopoulos G
    Insect Biochem Mol Biol; 2006 Oct; 36(10):769-78. PubMed ID: 17027843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of chloroquine on the expression of genes involved in the mosquito immune response to Plasmodium infection.
    Abrantes P; Lopes LF; do Rosário VE; Silveira H
    Insect Biochem Mol Biol; 2005 Oct; 35(10):1124-32. PubMed ID: 16102418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and characterization of a putative inhibitor of melanization from Anopheles gambiae.
    Shi L; Li B; Paskewitz SM
    Insect Mol Biol; 2006 Jun; 15(3):313-20. PubMed ID: 16756550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serine protease homolog pairs CLIPA4-A6, A4-A7Δ, and A4-A12 act as cofactors for proteolytic activation of prophenoloxidase-2 and -7 in Anopheles gambiae.
    Jin Q; Wang Y; Hu Y; He Y; Xiong C; Jiang H
    Insect Biochem Mol Biol; 2024 Jan; 164():104048. PubMed ID: 38056530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.