These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 17512826)
1. Automatic flow system for sequential determination of ABTS*+ scavenging capacity and Folin-Ciocalteu index: a comparative study in food products. Magalhães LM; Segundo MA; Reis S; Lima JL; Tóth IV; Rangel AO Anal Chim Acta; 2007 Jun; 592(2):193-201. PubMed ID: 17512826 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of the antioxidant activity by flow injection analysis method with electrochemically generated ABTS radical cation. Iveković D; Milardović S; Roboz M; Grabarić BS Analyst; 2005 May; 130(5):708-14. PubMed ID: 15852141 [TBL] [Abstract][Full Text] [Related]
3. Automatic method for the determination of Folin-Ciocalteu reducing capacity in food products. Magalhães LM; Segundo MA; Reis S; Lima JL; Rangel AO J Agric Food Chem; 2006 Jul; 54(15):5241-6. PubMed ID: 16848501 [TBL] [Abstract][Full Text] [Related]
4. Application of the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation assay to a flow injection system for the evaluation of antioxidant activity of some pure compounds and beverages. Pellegrini N; Del Rio D; Colombi B; Bianchi M; Brighenti F J Agric Food Chem; 2003 Jan; 51(1):260-4. PubMed ID: 12502418 [TBL] [Abstract][Full Text] [Related]
5. The antioxidant activity of wines determined by the ABTS(+) method: influence of sample dilution and time. Villaño D; Fernández-Pachón MS; Troncoso AM; García-Parrilla MC Talanta; 2004 Oct; 64(2):501-9. PubMed ID: 18969632 [TBL] [Abstract][Full Text] [Related]
6. Rapid microplate high-throughput methodology for assessment of Folin-Ciocalteu reducing capacity. Magalhães LM; Santos F; Segundo MA; Reis S; Lima JL Talanta; 2010 Dec; 83(2):441-7. PubMed ID: 21111158 [TBL] [Abstract][Full Text] [Related]
7. Optimization and validation of post-column assay for screening of radical scavengers in herbal raw materials and herbal preparations. Raudonis R; Bumblauskiene L; Jakstas V; Pukalskas A; Janulis V J Chromatogr A; 2010 Dec; 1217(49):7690-8. PubMed ID: 21036363 [TBL] [Abstract][Full Text] [Related]
8. Determination of an antioxidant capacity index by immobilized tyrosinase bioreactor. Girelli AM; Giuliani T; Mattei E; Papaleo D J Agric Food Chem; 2009 Jun; 57(12):5178-86. PubMed ID: 19530710 [TBL] [Abstract][Full Text] [Related]
9. Antioxidant capacity of teas and herbal infusions: polarographic assessment. Gorjanović S; Komes D; Pastor FT; Belščak-Cvitanović A; Pezo L; Hečimović I; Sužnjević D J Agric Food Chem; 2012 Sep; 60(38):9573-80. PubMed ID: 22950743 [TBL] [Abstract][Full Text] [Related]
10. Flow injection based methods for fast screening of antioxidant capacity. Magalhães LM; Santos M; Segundo MA; Reis S; Lima JL Talanta; 2009 Mar; 77(5):1559-66. PubMed ID: 19159764 [TBL] [Abstract][Full Text] [Related]
11. Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. Seeram NP; Aviram M; Zhang Y; Henning SM; Feng L; Dreher M; Heber D J Agric Food Chem; 2008 Feb; 56(4):1415-22. PubMed ID: 18220345 [TBL] [Abstract][Full Text] [Related]
12. An alternative standard for Trolox-equivalent antioxidant-capacity estimation based on thiol antioxidants. Comparative 2,2'-azinobis[3-ethylbenzothiazoline-6-sulfonic acid] decolorization and rotational viscometry study regarding hyaluronan degradation. Hrabárová E; Valachová K; Rapta P; Soltés L Chem Biodivers; 2010 Sep; 7(9):2191-200. PubMed ID: 20860024 [TBL] [Abstract][Full Text] [Related]
13. Methodological aspects about in vitro evaluation of antioxidant properties. Magalhães LM; Segundo MA; Reis S; Lima JL Anal Chim Acta; 2008 Apr; 613(1):1-19. PubMed ID: 18374697 [TBL] [Abstract][Full Text] [Related]
14. Sequential injection analysis with electrochemical detection as a tool for economic and rapid evaluation of total antioxidant capacity. Chan-Eam S; Teerasong S; Damwan K; Nacapricha D; Chaisuksant R Talanta; 2011 Jun; 84(5):1350-4. PubMed ID: 21641450 [TBL] [Abstract][Full Text] [Related]
15. Assessing and comparing the total antioxidant capacity of commercial beverages: application to beers, wines, waters and soft drinks using TRAP, TEAC and FRAP methods. Queirós RB; Tafulo PA; Sales MG Comb Chem High Throughput Screen; 2013 Jan; 16(1):22-31. PubMed ID: 22931382 [TBL] [Abstract][Full Text] [Related]
16. Antioxidant capacity of reaction products limits the applicability of the Trolox Equivalent Antioxidant Capacity (TEAC) assay. Arts MJ; Haenen GR; Voss HP; Bast A Food Chem Toxicol; 2004 Jan; 42(1):45-9. PubMed ID: 14630129 [TBL] [Abstract][Full Text] [Related]
18. Cupric ion reducing antioxidant capacity assay for food antioxidants: vitamins, polyphenolics, and flavonoids in food extracts. Apak R; Güçlü K; Ozyürek M; Bektas Oğlu B; Bener M Methods Mol Biol; 2008; 477():163-93. PubMed ID: 19082947 [TBL] [Abstract][Full Text] [Related]
19. Assessment of antioxidant capacity and phenolic content of selected commercial beverages. Abbe Maleyki MJ; Azrina A; Amin I Malays J Nutr; 2007 Sep; 13(2):149-59. PubMed ID: 22691753 [TBL] [Abstract][Full Text] [Related]
20. Antioxidant Capacity: Experimental Determination by EPR Spectroscopy and Mathematical Modeling. Polak J; Bartoszek M; Chorążewski M J Agric Food Chem; 2015 Jul; 63(28):6319-24. PubMed ID: 26120897 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]