These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 17513356)

  • 1. A self-consistent field analysis of the neurofilament brush with amino-acid resolution.
    Zhulina EB; Leermakers FA
    Biophys J; 2007 Sep; 93(5):1421-30. PubMed ID: 17513356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the ionic strength and pH on the equilibrium structure of a neurofilament brush.
    Zhulina EB; Leermakers FA
    Biophys J; 2007 Sep; 93(5):1452-63. PubMed ID: 17513355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation-mediated conformational changes in the mouse neurofilament architecture: insight from a neurofilament brush model.
    Stevenson W; Chang R; Gebremichael Y
    J Mol Biol; 2011 Jan; 405(4):1101-18. PubMed ID: 21134382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How the projection domains of NF-L and alpha-internexin determine the conformations of NF-M and NF-H in neurofilaments.
    Leermakers FA; Zhulina EB
    Eur Biophys J; 2010 Aug; 39(9):1323-34. PubMed ID: 20213320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational dynamics of neurofilament side-arms.
    Stevens MJ; Hoh JH
    J Phys Chem B; 2010 Jul; 114(27):8879-86. PubMed ID: 20557103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The polymer brush model of neurofilament projections: effect of protein composition.
    Zhulina EB; Leermakers FA
    Biophys J; 2010 Feb; 98(3):462-9. PubMed ID: 20141760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gel-expanded to gel-condensed transition in neurofilament networks revealed by direct force measurements.
    Beck R; Deek J; Jones JB; Safinya CR
    Nat Mater; 2010 Jan; 9(1):40-6. PubMed ID: 19915555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions between planar grafted neurofilament side-arms.
    Stevens MJ; Hoh JH
    J Phys Chem B; 2011 Jun; 115(23):7541-9. PubMed ID: 21598932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deleting the phosphorylated tail domain of the neurofilament heavy subunit does not alter neurofilament transport rate in vivo.
    Yuan A; Nixon RA; Rao MV
    Neurosci Lett; 2006 Jan; 393(2-3):264-8. PubMed ID: 16266786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational properties of interacting neurofilaments: Monte Carlo simulations of cylindrically grafted apposing neurofilament brushes.
    Jayanthi L; Stevenson W; Kwak Y; Chang R; Gebremichael Y
    J Biol Phys; 2013 Jun; 39(3):343-62. PubMed ID: 23860913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of the head domain of neurofilament protein (NF-M): a factor regulating topographic phosphorylation of NF-M tail domain KSP sites in neurons.
    Zheng YL; Li BS; Veeranna ; Pant HC
    J Biol Chem; 2003 Jun; 278(26):24026-32. PubMed ID: 12695506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of molecular model, ionic strength, divalent ions, and hydrophobic interaction on human neurofilament conformation.
    Lee J; Kim S; Chang R; Jayanthi L; Gebremichael Y
    J Chem Phys; 2013 Jan; 138(1):015103. PubMed ID: 23298063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural properties of neurofilament sidearms: sequence-based modeling of neurofilament architecture.
    Chang R; Kwak Y; Gebremichael Y
    J Mol Biol; 2009 Aug; 391(3):648-60. PubMed ID: 19559031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of repulsive forces between neurofilaments by sidearm phosphorylation.
    Kumar S; Hoh JH
    Biochem Biophys Res Commun; 2004 Nov; 324(2):489-96. PubMed ID: 15474454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relating interactions between neurofilaments to the structure of axonal neurofilament distributions through polymer brush models.
    Kumar S; Yin X; Trapp BD; Hoh JH; Paulaitis ME
    Biophys J; 2002 May; 82(5):2360-72. PubMed ID: 11964226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extensive phosphorylation and axonal transport of triton-soluble neurofilament subunits.
    Shea TB; Jung C; Yabe J; Ma D; Fischer I
    Subcell Biochem; 1998; 31():527-61. PubMed ID: 9932505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the phosphorylation sites of human high molecular weight neurofilament protein by electrospray ionization tandem mass spectrometry and database searching.
    Jaffe H; Veeranna ; Shetty KT; Pant HC
    Biochemistry; 1998 Mar; 37(11):3931-40. PubMed ID: 9521714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structures and interactions in 'bottlebrush' neurofilaments: the role of charged disordered proteins in forming hydrogel networks.
    Beck R; Deek J; Safinya CR
    Biochem Soc Trans; 2012 Oct; 40(5):1027-31. PubMed ID: 22988859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurofilament phosphorylation regulates axonal transport by an indirect mechanism: a merging of opposing hypotheses.
    Shea TB; Lee S
    Cytoskeleton (Hoboken); 2011 Nov; 68(11):589-95. PubMed ID: 21990272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurofilament stoichiometry simulations during neurodegeneration suggest a remarkable self-sufficient and stable in vivo protein structure.
    Kim S; Chang R; Teunissen C; Gebremichael Y; Petzold A
    J Neurol Sci; 2011 Aug; 307(1-2):132-8. PubMed ID: 21601889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.