These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 17513357)

  • 1. Microscopic diffusion and hydrodynamic interactions of hemoglobin in red blood cells.
    Doster W; Longeville S
    Biophys J; 2007 Aug; 93(4):1360-8. PubMed ID: 17513357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular dynamics in red blood cells investigated using neutron spectroscopy.
    Stadler AM; van Eijck L; Demmel F; Artmann G
    J R Soc Interface; 2011 Apr; 8(57):590-600. PubMed ID: 20739313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemoglobin diffusion and the dynamics of oxygen capture by red blood cells.
    Longeville S; Stingaciu LR
    Sci Rep; 2017 Sep; 7(1):10448. PubMed ID: 28874711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion of spheres in crowded suspensions of rods.
    Kang K; Gapinski J; Lettinga MP; Buitenhuis J; Meier G; Ratajczyk M; Dhont JK; Patkowski A
    J Chem Phys; 2005 Jan; 122(4):44905. PubMed ID: 15740296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Hydrodynamic Interactions on Self-Diffusion of Quasi-Two-Dimensional Colloidal Hard Spheres.
    Thorneywork AL; Rozas RE; Dullens RP; Horbach J
    Phys Rev Lett; 2015 Dec; 115(26):268301. PubMed ID: 26765032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and short-time dynamics in concentrated suspensions of charged colloids.
    Westermeier F; Fischer B; Roseker W; Grübel G; ägele G; Heinen M
    J Chem Phys; 2012 Sep; 137(11):114504. PubMed ID: 22998268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of hydrodynamic interactions on the diffusion of integral membrane proteins: diffusion in plasma membranes.
    Bussell SJ; Koch DL; Hammer DA
    Biophys J; 1995 May; 68(5):1836-49. PubMed ID: 7612825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-time self-diffusion of charged colloidal particles: electrokinetic and hydrodynamic interaction effects.
    McPhie MG; Nägele G
    J Chem Phys; 2007 Jul; 127(3):034906. PubMed ID: 17655462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The concentration dependence of the hemoglobin mutual diffusion coefficient.
    Alpert SS; Banks G
    Biophys Chem; 1976 May; 4(3):287-96. PubMed ID: 949530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osmotic and diffusive properties of intracellular water in camel erythrocytes: effect of hemoglobin crowdedness.
    Bogner P; Miseta A; Berente Z; Schwarcz A; Kotek G; Repa I
    Cell Biol Int; 2005 Sep; 29(9):731-6. PubMed ID: 15951204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic detail brownian dynamics simulations of concentrated protein solutions with a mean field treatment of hydrodynamic interactions.
    Mereghetti P; Wade RC
    J Phys Chem B; 2012 Jul; 116(29):8523-33. PubMed ID: 22594708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collective diffusion in charge-stabilized suspensions: concentration and salt effects.
    Gapinski J; Patkowski A; Banchio AJ; Holmqvist P; Meier G; Lettinga MP; Nägele G
    J Chem Phys; 2007 Mar; 126(10):104905. PubMed ID: 17362085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemoglobin affinity for 2,3-bisphosphoglycerate in solutions and intact erythrocytes: studies using pulsed-field gradient nuclear magnetic resonance and Monte Carlo simulations.
    Lennon AJ; Scott NR; Chapman BE; Kuchel PW
    Biophys J; 1994 Nov; 67(5):2096-109. PubMed ID: 7858147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unloading oxygen in a capillary vessel under a pathological condition.
    Escobar C; Méndez F
    Math Biosci; 2008 Oct; 215(2):127-36. PubMed ID: 18694766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theory of nanoparticle diffusion in unentangled and entangled polymer melts.
    Yamamoto U; Schweizer KS
    J Chem Phys; 2011 Dec; 135(22):224902. PubMed ID: 22168722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffusion, sedimentation, and rheology of concentrated suspensions of core-shell particles.
    Abade GC; Cichocki B; Ekiel-Jeżewska ML; Nägele G; Wajnryb E
    J Chem Phys; 2012 Mar; 136(10):104902. PubMed ID: 22423856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemoglobin dynamics in red blood cells: correlation to body temperature.
    Stadler AM; Digel I; Artmann GM; Embs JP; Zaccai G; Büldt G
    Biophys J; 2008 Dec; 95(11):5449-61. PubMed ID: 18708462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracer diffusion in colloidal suspensions under dilute and crowded conditions with hydrodynamic interactions.
    Tomilov A; Videcoq A; Chartier T; Ala-Nissilä T; Vattulainen I
    J Chem Phys; 2012 Jul; 137(1):014503. PubMed ID: 22779661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myoglobin and hemoglobin rotational diffusion in the cell.
    Wang D; Kreutzer U; Chung Y; Jue T
    Biophys J; 1997 Nov; 73(5):2764-70. PubMed ID: 9370470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of microcirculatory oxygen transport by erythrocyte/hemoglobin solution mixtures.
    Page TC; Light WR; Hellums JD
    Microvasc Res; 1998 Sep; 56(2):113-26. PubMed ID: 9756734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.