These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 175138)

  • 1. Chemistry of 99mTc tracers. II. In vitro conversion of tagged HEDP and pyrophosphate (bone-seekers) into gluconate (renal agent). Effects of Ca and Fe (ii) on in vivo distribution.
    McRae J; Hambright P; Valk P; Bearden AJ
    J Nucl Med; 1976 Mar; 17(3):208-11. PubMed ID: 175138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemistry of technetium radiopharmaceuticals. I. Exploration of the tissue distribution and oxidation state consequences of technetium (IV) in Tc-Sn-gluconate and Tc-Sn-EHDP using carrier 99Tc.
    Hambright P; McRae J; Valk PE; Bearden AJ; Shipley BA
    J Nucl Med; 1975 Jun; 16(6):478-82. PubMed ID: 808594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technetium-99m-methylene diphosphonate--a superior agent for skeletal imaging: comparison with other technetium complexes.
    Subramanian G; McAfee JG; Blair RJ; Kallfelz FA; Thomas FD
    J Nucl Med; 1975 Aug; 16(8):744-55. PubMed ID: 170385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technetium-99m-pyrophosphate: studies in vivo and in vitro.
    Kaye M; Silverton S; Rosenthall L
    J Nucl Med; 1975 Jan; 16(1):40-5. PubMed ID: 162947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of various 99mTc-Sn-pyrophosphate compounds in the rat. II. In vitro studies.
    Schümichen C; Mackenbrock B; Hoffmann G
    Nuklearmedizin; 1977 Aug; 16(4):157-62. PubMed ID: 198752
    [No Abstract]   [Full Text] [Related]  

  • 6. Kinetics of various 99mTc-Sn-pyrophosphate compounds in the rat. I. In vivo studies.
    Schümichen C; Walden J; Hoffmann G
    Nuklearmedizin; 1977 Jul; 16(3):100-3. PubMed ID: 197498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complexing of reduced technetium and tin (II) by chelating phosphate compounds. I. Chemical state of technetium.
    Schümichen C; Hohloch H; Schiller A; Pohle W; Hoffmann G
    Nuklearmedizin; 1979 May; 18(2):98-104. PubMed ID: 38438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Comparative evaluation of the accumulation of 99mTc-labeled phosphate compounds in the bones].
    Atamaniuk NP; Mechev DS
    Eksp Onkol; 1985; 7(1):66-7. PubMed ID: 2983974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complexing of reduced technetium and tin(II) by chelating phosphate compounds. II. In vitro stability of pyrophosphate and ethane-1, hydroxy-1, diphosphonate (EHDP) complexes.
    Schümichen C; Hohloch M; Hoffmann G
    Nuklearmedizin; 1979 May; 18(2):105-9. PubMed ID: 38437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 99mTc-labelled compounds prepared with sodium dithionite as reducing agent.
    Vilcek S; Kalincák M; Machán V
    Nuklearmedizin; 1981 Dec; 20(6):283-9. PubMed ID: 6460222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation and in-vivo-distribution of different 99mTc-Sn-pyrophosphate complexes.
    Schümichen C; Roth KH; Hoffmann G
    Nucl Med (Stuttg); 1975 Dec; 14(4):323-9. PubMed ID: 2905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 99mTc-pyrophosphate for bone imaging.
    Eckelman WC; Reba RC; Kubota H; Stevenson JS
    J Nucl Med; 1974 Apr; 15(4):279-83. PubMed ID: 4361927
    [No Abstract]   [Full Text] [Related]  

  • 13. [Complexes 99mTc-Sn-DTPA, 99mTc-Fe-ascorbic acid, and 99mTc-Sn-calcium-gluconogalactogluconate in the diagnosis of renal function and morphology (author's transl)].
    Licińska I; Graban W; Jakubowski W; Krasucki T; Lachnik E; Wiza J; Zulczyk W; Smoliński S; Zielińska B
    Pol Przegl Radiol Med Nukl; 1977; 41(1):57-61. PubMed ID: 859758
    [No Abstract]   [Full Text] [Related]  

  • 14. Kinetics of 99mTc-labeled pyrophosphate and polyphosphate in man.
    Krishnamurthy GT; Huebotter RJ; Walsh CF; Taylor JR; Kehr MD; Tubis M; Blahd WH
    J Nucl Med; 1975 Feb; 16(2):109-15. PubMed ID: 162949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uptake of Tc-99m monophosphate complexes in bone and myocardial necrosis in animals.
    Kung HF; Ackerhalt R; Blau M
    J Nucl Med; 1978 Sep; 19(9):1027-31. PubMed ID: 690703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Comparative animal experiments concerning the distribution of 99mTc-pyrophosphate, 99mTc-diphosphonate and 85Sr (author's transl)].
    Büll U; Balser D; Frey KW
    Fortschr Geb Rontgenstr Nuklearmed; 1974 Apr; 120(4):481-8. PubMed ID: 4367024
    [No Abstract]   [Full Text] [Related]  

  • 17. Dynamic studies with 99mTc-HEDP in normal subjects and in patients with bone tumors.
    Citrin DL; Bessent RG; McGinley E; Gordon D
    J Nucl Med; 1975 Oct; 16(10):886-90. PubMed ID: 809552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro and in vivo behaviour of four different 99(m)Tc-HEDP complexes.
    Inoue O; Yamaguchi T; Ikeda I
    Nuklearmedizin; 1982 Dec; 21(6):227-31. PubMed ID: 6820139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro stabilization of a low-tin bone-imaging agent (99mTc-Sn-HEDP) by ascorbic acid.
    Tofe AJ; Francis MD
    J Nucl Med; 1976 Sep; 17(9):820-5. PubMed ID: 822138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between bone uptake of 99mTc-pyrophosphate and hydroxyproline in blood and urine.
    Wiegmann T; Kirsh J; Rosenthall L; Kaye M
    J Nucl Med; 1976 Aug; 17(8):711-4. PubMed ID: 180269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.