These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 17514235)
1. Design and fabrication of a novel reflection filter. Sun X; Gu P; Shen W; Liu X; Wang Y; Zhang Y Appl Opt; 2007 May; 46(15):2899-902. PubMed ID: 17514235 [TBL] [Abstract][Full Text] [Related]
2. Narrowband high-reflection filters with wide and low-reflection sidebands. Wu Y; Jiao H; Peng D; Wang Z; Fu L; Lu G; Chen N; Ling L Appl Opt; 2008 Oct; 47(29):5370-7. PubMed ID: 18846178 [TBL] [Abstract][Full Text] [Related]
3. Multilayer interference filters with narrow stop bands. Young L Appl Opt; 1967 Feb; 6(2):297-315. PubMed ID: 20057744 [TBL] [Abstract][Full Text] [Related]
6. Reflection filter with high reflectivity and narrow bandwidth. Tan M; Lin Y; Zhao D Appl Opt; 1997 Feb; 36(4):827-30. PubMed ID: 18250745 [TBL] [Abstract][Full Text] [Related]
7. Design of optical bandpass filters based on a two-material multilayer structure. Belyaev BA; Tyurnev VV; Shabanov VF Opt Lett; 2014 Jun; 39(12):3512-5. PubMed ID: 24978524 [TBL] [Abstract][Full Text] [Related]
8. Optical thin-film reflection filters based on the theory of photonic crystals. Sun X; Shen W; Gai X; Gu P; Liu X; Zhang Y Appl Opt; 2008 May; 47(13):C35-40. PubMed ID: 18449268 [TBL] [Abstract][Full Text] [Related]
9. Scattering in twin-cavity narrow-band interference filters illuminated by a monochromatic beam. Xiong J; Sun YG; Hu G Appl Opt; 1997 Dec; 36(34):9014-20. PubMed ID: 18264459 [TBL] [Abstract][Full Text] [Related]
10. Metal/dielectric transmission interference filters with low reflectance. 1. Design. Dobrowolski JA; Li L; Kemp RA Appl Opt; 1995 Sep; 34(25):5673-83. PubMed ID: 21060397 [TBL] [Abstract][Full Text] [Related]
11. Multiple reflectors as narrow-band and broadband vacuum ultraviolet filters. Zukic M; Torr DG Appl Opt; 1992 Apr; 31(10):1588-96. PubMed ID: 20720793 [TBL] [Abstract][Full Text] [Related]
12. Design and fabrication of far ultraviolet filters based on π-multilayer technology in high-k materials. Wang XD; Chen B; Wang HF; He F; Zheng X; He LP; Chen B; Liu SJ; Cui ZX; Yang XH; Li YP Sci Rep; 2015 Feb; 5():8503. PubMed ID: 25687255 [TBL] [Abstract][Full Text] [Related]
13. Application of in situ ellipsometry in the fabrication of thin-film optical coatings on semiconductors. Boudreau MG; Wallace SG; Balcaitis G; Murugkar S; Haugen HK; Mascher P Appl Opt; 2000 Feb; 39(6):1053-8. PubMed ID: 18337985 [TBL] [Abstract][Full Text] [Related]
16. Design of waveguide-grating filters with symmetrical line shapes and low sidebands. Wang SS; Magnusson R Opt Lett; 1994 Jun; 19(12):919-21. PubMed ID: 19844488 [TBL] [Abstract][Full Text] [Related]
17. Design and Fabrication of Far-Ultraviolet Reflective Broadband Filter Based on Dielectric Materials. Wang X; Chen B; Yao L Appl Spectrosc; 2018 Jun; 72(6):943-946. PubMed ID: 29712438 [TBL] [Abstract][Full Text] [Related]
18. Bandpass filters for wavelength division multiplexing-modification of the spectral bandwidth. Baumeister P Appl Opt; 1998 Oct; 37(28):6609-14. PubMed ID: 18301467 [TBL] [Abstract][Full Text] [Related]
19. Narrowband and tunable anomalous transmission filters for spectral monitoring in the extreme ultraviolet wavelength region. Barreaux JLP; Kozhevnikov IV; Bayraktar M; Van De Kruijs RWE; Bastiaens HMJ; Bijkerk F; Boller KJ Opt Express; 2017 Feb; 25(3):1993-2008. PubMed ID: 29519048 [TBL] [Abstract][Full Text] [Related]