These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 17514251)

  • 1. Range-resolved optical detection of honeybees by use of wing-beat modulation of scattered light for locating land mines.
    Hoffman DS; Nehrir AR; Repasky KS; Shaw JA; Carlsten JL
    Appl Opt; 2007 May; 46(15):3007-12. PubMed ID: 17514251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field demonstration of a scanning lidar and detection algorithm for spatially mapping honeybees for biological detection of land mines.
    Carlsten ES; Wicks GR; Repasky KS; Carlsten JL; Bromenshenk JJ; Henderson CB
    Appl Opt; 2011 May; 50(14):2112-23. PubMed ID: 21556112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical detection of honeybees by use of wing-beat modulation of scattered laser light for locating explosives and land mines.
    Repasky KS; Shaw JA; Scheppele R; Melton C; Carsten JL; Spangler LH
    Appl Opt; 2006 Mar; 45(8):1839-43. PubMed ID: 16572702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Building blocks for a two-frequency laser lidar-radar: a preliminary study.
    Morvan L; Lai ND; Dolfi D; Huignard JP; Brunel M; Bretenaker F; Le Floch A
    Appl Opt; 2002 Sep; 41(27):5702-12. PubMed ID: 12269571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarization lidar measurements of honey bees in flight for locating land mines.
    Shaw J; Seldomridge N; Dunkle D; Nugent P; Spangler L; Bromenshenk J; Henderson C; Churnside J; Wilson J
    Opt Express; 2005 Jul; 13(15):5853-63. PubMed ID: 19498590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micropulse differential absorption lidar for identification of carbon sequestration site leakage.
    Johnson W; Repasky KS; Carlsten JL
    Appl Opt; 2013 May; 52(13):2994-3003. PubMed ID: 23669765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency-doubled and Q-switched 946-nm Nd:YAG laser pumped by a diode-laser array.
    Hong J; Sinclair BD; Sibbett W; Dunn MH
    Appl Opt; 1992 Mar; 31(9):1318-21. PubMed ID: 20720761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a high spectral resolution lidar based on confocal Fabry-Perot spectral filters.
    Hoffman DS; Repasky KS; Reagan JA; Carlsten JL
    Appl Opt; 2012 Sep; 51(25):6233-44. PubMed ID: 22945172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fiber-optic laser sensor for mine detection and verification.
    Bohling C; Scheel D; Hohmann K; Schade W; Reuter M; Holl G
    Appl Opt; 2006 Jun; 45(16):3817-25. PubMed ID: 16724144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microchip Nd:YAG dual-frequency laser interferometer for displacement measurement.
    Chen H; Zhang S
    Opt Express; 2021 Feb; 29(4):6248-6256. PubMed ID: 33726150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diode-pumped passively Q-switched self-frequency-doubled Nd:CNGS laser.
    Zhang X; Zhou Y; Yasukevich A; Loiko P; Mateos X; Xu X; Guo S; Wang Z
    Opt Express; 2017 Aug; 25(17):19760-19766. PubMed ID: 29041664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lidar Observation of Cloud.
    Collis RT
    Science; 1965 Aug; 149(3687):978-81. PubMed ID: 17832581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Thomson scattering diagnostic on the Pegasus Toroidal experiment.
    Schlossberg DJ; Schoenbeck NL; Dowd AS; Fonck RJ; Moritz JI; Thome KE; Winz GR
    Rev Sci Instrum; 2012 Oct; 83(10):10E335. PubMed ID: 23126993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diode-pumped 214.8-nm Nd:YAG /Cr4+:YAG microchip laser system for the detection of NO.
    Wormhoudt J; Shorter JH; Cook CC; Zayhowski JJ
    Appl Opt; 2000 Aug; 39(24):4418-24. PubMed ID: 18350031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Split lesion randomized comparative study between long pulsed Nd:YAG laser 532 and 1,064 nm in treatment of facial port-wine stain.
    Al-Dhalimi MA; Al-Janabi MH
    Lasers Surg Med; 2016 Nov; 48(9):852-858. PubMed ID: 27669109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-pulse-repetition-freqyency lidar system using a single telescope for transmission and reception.
    Argall PS; Jacka F
    Appl Opt; 1996 May; 35(15):2619-29. PubMed ID: 21085407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of high-energy, kilohertz-rate narrowband tunable ultraviolet pulses using a burst-mode dye laser system.
    Pan R; Retzer U; Werblinski T; Slipchenko MN; Meyer TR; Zigan L; Will S
    Opt Lett; 2018 Mar; 43(5):1191-1194. PubMed ID: 29489813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Threshold determinations for selective retinal pigment epithelium damage with repetitive pulsed microsecond laser systems in rabbits.
    Framme C; Schuele G; Roider J; Kracht D; Birngruber R; Brinkmann R
    Ophthalmic Surg Lasers; 2002; 33(5):400-9. PubMed ID: 12358294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-pulse standoff Raman detection of chemicals from 120 m distance during daytime.
    Misra AK; Sharma SK; Acosta TE; Porter JN; Bates DE
    Appl Spectrosc; 2012 Nov; 66(11):1279-85. PubMed ID: 23146183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-sensitive optical time-domain reflectometric system based on a single-source dual heterodyne detection scheme.
    Yu M; Liu M; Chang T; Lang J; Chen J; Cui HL
    Appl Opt; 2017 May; 56(14):4058-4064. PubMed ID: 29047536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.