These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 17514372)

  • 21. The origin of cluster N2 of the energy-transducing NADH-quinone oxidoreductase: comparisons of phylogenetically related enzymes.
    Yano T; Ohnishi T
    J Bioenerg Biomembr; 2001 Jun; 33(3):213-22. PubMed ID: 11695831
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Consistent structure between bacterial and mitochondrial NADH:ubiquinone oxidoreductase (complex I).
    Guénebaut V; Schlitt A; Weiss H; Leonard K; Friedrich T
    J Mol Biol; 1998 Feb; 276(1):105-12. PubMed ID: 9514725
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The malaria parasite type II NADH:quinone oxidoreductase: an alternative enzyme for an alternative lifestyle.
    Fisher N; Bray PG; Ward SA; Biagini GA
    Trends Parasitol; 2007 Jul; 23(7):305-10. PubMed ID: 17499024
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The respiratory chain and energy conservation in the mitochondrion-like bacterium Paracoccus denitrificans.
    van Verseveld HW; Bosma G
    Microbiol Sci; 1987 Nov; 4(11):329-33. PubMed ID: 3153596
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alternate pathways for NADH oxidation in Thermus thermophilus using type 2 NADH dehydrogenases.
    Venkatakrishnan P; Lencina AM; Schurig-Briccio LA; Gennis RB
    Biol Chem; 2013 May; 394(5):667-76. PubMed ID: 23370906
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of the exogenous NADH dehydrogenase of heart mitochondria on the transmembranous proton movement.
    Nohl H; Schönheit K
    Arch Biochem Biophys; 1996 Jul; 331(2):259-64. PubMed ID: 8660706
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modification of substrate specificity in single point mutants of Agrobacterium tumefaciens type II NADH dehydrogenase.
    Desplats C; Beyly A; Cuiné S; Bernard L; Cournac L; Peltier G
    FEBS Lett; 2007 Aug; 581(21):4017-22. PubMed ID: 17673203
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Cu(II)-reductase NADH dehydrogenase-2 of Escherichia coli improves the bacterial growth in extreme copper concentrations and increases the resistance to the damage caused by copper and hydroperoxide.
    Rodríguez-Montelongo L; Volentini SI; Farías RN; Massa EM; Rapisarda VA
    Arch Biochem Biophys; 2006 Jul; 451(1):1-7. PubMed ID: 16759635
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amphipathic C-terminal region of Escherichia coli NADH dehydrogenase-2 mediates membrane localization.
    Villegas JM; Volentini SI; Rintoul MR; Rapisarda VA
    Arch Biochem Biophys; 2011 Jan; 505(2):155-9. PubMed ID: 20933494
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The alternative NADH dehydrogenase is present in mitochondria of some animal taxa.
    Matus-Ortega MG; Salmerón-Santiago KG; Flores-Herrera O; Guerra-Sánchez G; Martínez F; Rendón JL; Pardo JP
    Comp Biochem Physiol Part D Genomics Proteomics; 2011 Sep; 6(3):256-63. PubMed ID: 21632289
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three novel subunits of Arabidopsis chloroplastic NAD(P)H dehydrogenase identified by bioinformatic and reverse genetic approaches.
    Takabayashi A; Ishikawa N; Obayashi T; Ishida S; Obokata J; Endo T; Sato F
    Plant J; 2009 Jan; 57(2):207-19. PubMed ID: 18785996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cyanobacterial NDH-1 complexes: multiplicity in function and subunit composition.
    Battchikova N; Aro EM
    Physiol Plant; 2007 Sep; 131(1):22-32. PubMed ID: 18251921
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional characterization and target validation of alternative complex I of Plasmodium falciparum mitochondria.
    Biagini GA; Viriyavejakul P; O'neill PM; Bray PG; Ward SA
    Antimicrob Agents Chemother; 2006 May; 50(5):1841-51. PubMed ID: 16641458
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Diversity of the respiratory chain in gram-positive bacteria--its position in the whole life].
    Sakamoto J; Sone N
    Tanpakushitsu Kakusan Koso; 2003 Sep; 48(12):1712-21. PubMed ID: 12971274
    [No Abstract]   [Full Text] [Related]  

  • 35. New class of bacterial membrane oxidoreductases.
    Yanyushin MF; del Rosario MC; Brune DC; Blankenship RE
    Biochemistry; 2005 Aug; 44(30):10037-45. PubMed ID: 16042380
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NADH dehydrogenases: from basic science to biomedicine.
    Yagi T; Seo BB; Di Bernardo S; Nakamaru-Ogiso E; Kao MC; Matsuno-Yagi A
    J Bioenerg Biomembr; 2001 Jun; 33(3):233-42. PubMed ID: 11695833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phylogenomic analysis and predicted physiological role of the proton-translocating NADH:quinone oxidoreductase (complex I) across bacteria.
    Spero MA; Aylward FO; Currie CR; Donohue TJ
    mBio; 2015 Apr; 6(2):. PubMed ID: 25873378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure of the bacterial type II NADH dehydrogenase: a monotopic membrane protein with an essential role in energy generation.
    Heikal A; Nakatani Y; Dunn E; Weimar MR; Day CL; Baker EN; Lott JS; Sazanov LA; Cook GM
    Mol Microbiol; 2014 Mar; 91(5):950-64. PubMed ID: 24444429
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quinone-reactive proteins devoid of haem b form widespread membrane-bound electron transport modules in bacterial respiration.
    Simon J; Kern M
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):1011-6. PubMed ID: 18793180
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of the Catalytic Ubiquinone-binding Site of
    Tuz K; Li C; Fang X; Raba DA; Liang P; Minh DD; Juárez O
    J Biol Chem; 2017 Feb; 292(7):3039-3048. PubMed ID: 28053088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.