These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 17514412)
1. Modification of axial fiber contact residues impact sickle hemoglobin polymerization by perturbing a network of coupled interactions. Banerjee S; Mirsamadi N; Anantharaman L; Sivaram MV; Gupta RB; Choudhury D; Roy RP Protein J; 2007 Oct; 26(7):445-55. PubMed ID: 17514412 [TBL] [Abstract][Full Text] [Related]
2. Linkage of interactions in sickle hemoglobin fiber assembly: inhibitory effect emanating from mutations in the AB region of the alpha-chain is annulled by a mutation at its EF corner. Sudha R; Anantharaman L; Sivaram MV; Mirsamadi N; Choudhury D; Lohiya NK; Gupta RB; Roy RP J Biol Chem; 2004 May; 279(19):20018-27. PubMed ID: 14982923 [TBL] [Abstract][Full Text] [Related]
3. Analysis of the intermolecular contacts within sickle hemoglobin fibers: effect of site-specific substitutions, fiber pitch, and double-strand disorder. Watowich SJ; Gross LJ; Josephs R J Struct Biol; 1993; 111(3):161-79. PubMed ID: 8003379 [TBL] [Abstract][Full Text] [Related]
4. A role for the alpha 113 (GH1) amino acid residue in the polymerization of sickle hemoglobin. Evaluation of its inhibitory strength and interaction linkage with two fiber contact sites (alpha 16/23) located in the AB region of the alpha-chain. Sivaram MV; Sudha R; Roy RP J Biol Chem; 2001 May; 276(21):18209-15. PubMed ID: 11259442 [TBL] [Abstract][Full Text] [Related]
5. Analysis of the stability of hemoglobin S double strands. Mu XQ; Makowski L; Magdoff-Fairchild B Biophys J; 1998 Jan; 74(1):655-68. PubMed ID: 9449367 [TBL] [Abstract][Full Text] [Related]
6. Probing the Twisted Structure of Sickle Hemoglobin Fibers via Particle Simulations. Lu L; Li X; Vekilov PG; Karniadakis GE Biophys J; 2016 May; 110(9):2085-93. PubMed ID: 27166816 [TBL] [Abstract][Full Text] [Related]
7. Application of isotope exchange based mass spectrometry to understand the mechanism of inhibition of sickle hemoglobin polymerization upon oxygenation. Das R; Mitra A; Bhat V; Mandal AK J Struct Biol; 2017 Jul; 199(1):76-83. PubMed ID: 28465180 [TBL] [Abstract][Full Text] [Related]
8. Interspecies hybrid HbS: complete neutralization of Val6(beta)-dependent polymerization of human beta-chain by pig alpha-chains. Rao MJ; Malavalli A; Manjula BN; Kumar R; Prabhakaran M; Sun DP; Ho NT; Ho C; Nagel RL; Acharya AS J Mol Biol; 2000 Jul; 300(5):1389-406. PubMed ID: 10903876 [TBL] [Abstract][Full Text] [Related]
9. Influence of semisynthetic modification of the scaffold of a contact domain of HbS on polymerization: role of flexible surface topology in polymerization inhibition. Sonati S; Bhutoria S; Prabhakaran M; Acharya SA J Biomol Struct Dyn; 2018 Feb; 36(3):689-700. PubMed ID: 28278759 [TBL] [Abstract][Full Text] [Related]
10. On the Binding Free Energy and Molecular Origin of Sickle Cell Hemoglobin Aggregation. Galamba N; Pipolo S J Phys Chem B; 2018 Aug; 122(30):7475-7483. PubMed ID: 29995412 [TBL] [Abstract][Full Text] [Related]
11. Nucleation and polymerization of sickle hemoglobin with Leu beta 88 substituted by Ala. Cao Z; Liao D; Mirchev R; Martin de Llano JJ; Himanen JP; Manning JM; Ferrone FA J Mol Biol; 1997 Feb; 265(5):580-9. PubMed ID: 9048950 [TBL] [Abstract][Full Text] [Related]
12. Systematic enhancement of polymerization of recombinant sickle hemoglobin mutants: implications for transgenic mouse model for sickle cell anemia. Li X; Mirza UA; Chait BT; Manning JM Blood; 1997 Dec; 90(11):4620-7. PubMed ID: 9373274 [TBL] [Abstract][Full Text] [Related]
13. Sickle hemoglobin polymer stability probed by triple and quadruple mutant hybrids. Li X; Briehl RW; Bookchin RM; Josephs R; Wei B; Manning JM; Ferrone FA J Biol Chem; 2002 Apr; 277(16):13479-87. PubMed ID: 11782463 [TBL] [Abstract][Full Text] [Related]
14. Pair-wise interactions of polymerization inhibitory contact site mutations of hemoglobin-S. Srinivasulu S; Perumalsamy K; Upadhya R; Manjula BN; Feiring S; Alami R; Bouhassira E; Fabry ME; Nagel RL; Acharya AS Protein J; 2006 Dec; 25(7-8):503-16. PubMed ID: 17131194 [TBL] [Abstract][Full Text] [Related]
15. A coarse-grain molecular dynamics model for sickle hemoglobin fibers. Li H; Lykotrafitis G J Mech Behav Biomed Mater; 2011 Feb; 4(2):162-73. PubMed ID: 21262494 [TBL] [Abstract][Full Text] [Related]
16. Enhanced inhibition of polymerization of sickle cell hemoglobin in the presence of recombinant mutants of human fetal hemoglobin with substitutions at position 43 in the gamma-chain. Tam MF; Chen J; Tam TC; Tsai CH; Shen TJ; Simplaceanu V; Feinstein TN; Barrick D; Ho C Biochemistry; 2005 Sep; 44(36):12188-95. PubMed ID: 16142917 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of beta(S)-chain dependent polymerization by synergistic complementation of contact site perturbations of alpha-chain: application of semisynthetic chimeric alpha-chains. Srinivasulu S; Malavalli A; Prabhakaran M; Nagel RL; Acharya AS Protein Eng; 1999 Dec; 12(12):1105-11. PubMed ID: 10611404 [TBL] [Abstract][Full Text] [Related]
18. Crystal structure of deoxy-human hemoglobin beta6 Glu --> Trp. Implications for the structure and formation of the sickle cell fiber. Harrington DJ; Adachi K; Royer WE J Biol Chem; 1998 Dec; 273(49):32690-6. PubMed ID: 9830011 [TBL] [Abstract][Full Text] [Related]
19. Mesoscopic Adaptive Resolution Scheme toward Understanding of Interactions between Sickle Cell Fibers. Lu L; Li H; Bian X; Li X; Karniadakis GE Biophys J; 2017 Jul; 113(1):48-59. PubMed ID: 28700924 [TBL] [Abstract][Full Text] [Related]
20. Properties of a recombinant human hemoglobin double mutant: sickle hemoglobin with Leu-88(beta) at the primary aggregation site substituted by Ala. Martin de Llano JJ; Manning JM Protein Sci; 1994 Aug; 3(8):1206-12. PubMed ID: 7987215 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]