These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 17514572)

  • 21. Compound-class specific estimation of solid organic compound vapour pressure and aqueous solubility from simple molecular structure descriptors and the temperature of melting.
    van Noort PC
    Chemosphere; 2009 Oct; 77(6):838-41. PubMed ID: 19703702
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Statistical external validation and consensus modeling: a QSPR case study for Koc prediction.
    Gramatica P; Giani E; Papa E
    J Mol Graph Model; 2007 Mar; 25(6):755-66. PubMed ID: 16890002
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of rate constants for radical degradation of aromatic pollutants in water matrix: a QSAR study.
    Kusić H; Rasulev B; Leszczynska D; Leszczynski J; Koprivanac N
    Chemosphere; 2009 May; 75(8):1128-34. PubMed ID: 19201442
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative structure-property relationship study of n-octanol-water partition coefficients of some of diverse drugs using multiple linear regression.
    Ghasemi J; Saaidpour S
    Anal Chim Acta; 2007 Dec; 604(2):99-106. PubMed ID: 17996529
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of the aqueous solubility of benzylamine salts using QSPR model.
    Tantishaiyakul V
    J Pharm Biomed Anal; 2005 Feb; 37(2):411-5. PubMed ID: 15708687
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wavelet neural network modeling in QSPR for prediction of solubility of 25 anthraquinone dyes at different temperatures and pressures in supercritical carbon dioxide.
    Tabaraki R; Khayamian T; Ensafi AA
    J Mol Graph Model; 2006 Sep; 25(1):46-54. PubMed ID: 16337156
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The aqueous solubility of some herbicidal by-side toxic impurities: predicted data of the 399 chlorinated trans-azoxybenzene congeners.
    Piliszek S; Wilczyńska-Piliszek AJ; Falandysz J
    J Environ Sci Health B; 2012; 47(4):275-87. PubMed ID: 22428889
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calculation of quantum-mechanical descriptors for QSPR at the DFT level: is it necessary?
    Puzyn T; Suzuki N; Haranczyk M; Rak J
    J Chem Inf Model; 2008 Jun; 48(6):1174-80. PubMed ID: 18510372
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advances in the replacement and enhanced replacement method in QSAR and QSPR theories.
    Mercader AG; Duchowicz PR; Fernández FM; Castro EA
    J Chem Inf Model; 2011 Jul; 51(7):1575-81. PubMed ID: 21644502
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational aqueous solubility prediction for drug-like compounds in congeneric series.
    Du-Cuny L; Huwyler J; Wiese M; Kansy M
    Eur J Med Chem; 2008 Mar; 43(3):501-12. PubMed ID: 17574307
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative structure-property relationship for predicting chlorine demand by organic molecules.
    Luilo GB; Cabaniss SE
    Environ Sci Technol; 2010 Apr; 44(7):2503-8. PubMed ID: 20230049
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting physico-chemical properties of polychlorinated diphenyl ethers (PCDEs): potential persistent organic pollutants (POPs).
    Huang J; Yu G; Yang X; Zhang ZL
    J Environ Sci (China); 2004; 16(2):204-7. PubMed ID: 15137639
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of the modelling power approach to variable subset selection for GA-PLS QSAR models.
    Sagrado S; Cronin MT
    Anal Chim Acta; 2008 Feb; 609(2):169-74. PubMed ID: 18261511
    [TBL] [Abstract][Full Text] [Related]  

  • 34. QSPR models for polychlorinated biphenyls: n-Octanol/water partition coefficient.
    Padmanabhan J; Parthasarathi R; Subramanian V; Chattaraj PK
    Bioorg Med Chem; 2006 Feb; 14(4):1021-8. PubMed ID: 16214354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Retention prediction of peptides based on uninformative variable elimination by partial least squares.
    Put R; Daszykowski M; Baczek T; Vander Heyden Y
    J Proteome Res; 2006 Jul; 5(7):1618-25. PubMed ID: 16823969
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative structure-retention relationships for organic pollutants in biopartitioning micellar chromatography.
    Xia B; Ma W; Zhang X; Fan B
    Anal Chim Acta; 2007 Aug; 598(1):12-8. PubMed ID: 17693301
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A quantitative structure property relationship for prediction of solubilization of hazardous compounds using GA-based MLR in CTAB micellar media.
    Ghasemi JB; Abdolmaleki A; Mandoumi N
    J Hazard Mater; 2009 Jan; 161(1):74-80. PubMed ID: 18456399
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TOMOCOMD-CARDD descriptors-based virtual screening of tyrosinase inhibitors: evaluation of different classification model combinations using bond-based linear indices.
    Casañola-Martín GM; Marrero-Ponce Y; Khan MT; Ather A; Sultan S; Torrens F; Rotondo R
    Bioorg Med Chem; 2007 Feb; 15(3):1483-503. PubMed ID: 17110117
    [TBL] [Abstract][Full Text] [Related]  

  • 39. QSPR models for the physicochemical properties of halogenated methyl-phenyl ethers.
    Xu HY; Zhang JY; Zou JW; Chen XS
    J Mol Graph Model; 2008 Apr; 26(7):1076-81. PubMed ID: 18060816
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting the auto-ignition temperatures of organic compounds from molecular structure using support vector machine.
    Pan Y; Jiang J; Wang R; Cao H; Cui Y
    J Hazard Mater; 2009 May; 164(2-3):1242-9. PubMed ID: 18952371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.