These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 17514751)
1. Carbon metabolism and product inhibition determine the epoxidation efficiency of solvent-tolerant Pseudomonas sp. strain VLB120DeltaC. Park JB; Bühler B; Panke S; Witholt B; Schmid A Biotechnol Bioeng; 2007 Dec; 98(6):1219-29. PubMed ID: 17514751 [TBL] [Abstract][Full Text] [Related]
2. Production host selection for asymmetric styrene epoxidation: Escherichia coli vs. solvent-tolerant Pseudomonas. Kuhn D; Bühler B; Schmid A J Ind Microbiol Biotechnol; 2012 Aug; 39(8):1125-33. PubMed ID: 22526330 [TBL] [Abstract][Full Text] [Related]
3. The efficiency of recombinant Escherichia coli as biocatalyst for stereospecific epoxidation. Park JB; Bühler B; Habicher T; Hauer B; Panke S; Witholt B; Schmid A Biotechnol Bioeng; 2006 Oct; 95(3):501-12. PubMed ID: 16767777 [TBL] [Abstract][Full Text] [Related]
4. Engineering of Pseudomonas taiwanensis VLB120 for constitutive solvent tolerance and increased specific styrene epoxidation activity. Volmer J; Neumann C; Bühler B; Schmid A Appl Environ Microbiol; 2014 Oct; 80(20):6539-48. PubMed ID: 25128338 [TBL] [Abstract][Full Text] [Related]
5. Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase. Blank LM; Ionidis G; Ebert BE; Bühler B; Schmid A FEBS J; 2008 Oct; 275(20):5173-90. PubMed ID: 18803670 [TBL] [Abstract][Full Text] [Related]
6. Pilot-scale production of (S)-styrene oxide from styrene by recombinant Escherichia coli synthesizing styrene monooxygenase. Panke S; Held M; Wubbolts MG; Witholt B; Schmid A Biotechnol Bioeng; 2002 Oct; 80(1):33-41. PubMed ID: 12209784 [TBL] [Abstract][Full Text] [Related]
7. The application of constitutively solvent-tolerant P. taiwanensis VLB120ΔCΔttgV for stereospecific epoxidation of toxic styrene alleviates carrier solvent use. Volmer J; Schmid A; Bühler B Biotechnol J; 2017 Jul; 12(7):. PubMed ID: 28345250 [TBL] [Abstract][Full Text] [Related]
8. NADH availability limits asymmetric biocatalytic epoxidation in a growing recombinant Escherichia coli strain. Bühler B; Park JB; Blank LM; Schmid A Appl Environ Microbiol; 2008 Mar; 74(5):1436-46. PubMed ID: 18192422 [TBL] [Abstract][Full Text] [Related]
9. Microbial biofilms: new catalysts for maximizing productivity of long-term biotransformations. Gross R; Hauer B; Otto K; Schmid A Biotechnol Bioeng; 2007 Dec; 98(6):1123-34. PubMed ID: 17614329 [TBL] [Abstract][Full Text] [Related]
10. Characterization of a biofilm membrane reactor and its prospects for fine chemical synthesis. Gross R; Lang K; Bühler K; Schmid A Biotechnol Bioeng; 2010 Mar; 105(4):705-17. PubMed ID: 19845014 [TBL] [Abstract][Full Text] [Related]
12. Production of enantiopure styrene oxide by recombinant Escherichia coli synthesizing a two-component styrene monooxygenase. Panke S; Wubbolts MG; Schmid A; Witholt B Biotechnol Bioeng; 2000 Jul; 69(1):91-100. PubMed ID: 10820335 [TBL] [Abstract][Full Text] [Related]
13. Maximizing the productivity of catalytic biofilms on solid supports in membrane aerated reactors. Halan B; Schmid A; Buehler K Biotechnol Bioeng; 2010 Jul; 106(4):516-27. PubMed ID: 20229513 [TBL] [Abstract][Full Text] [Related]
14. Subtoxic product levels limit the epoxidation capacity of recombinant E. coli by increasing microbial energy demands. Kuhn D; Fritzsch FS; Zhang X; Wendisch VF; Blank LM; Bühler B; Schmid A J Biotechnol; 2013 Jan; 163(2):194-203. PubMed ID: 22922011 [TBL] [Abstract][Full Text] [Related]
15. Making variability less variable: matching expression system and host for oxygenase-based biotransformations. Lindmeyer M; Meyer D; Kuhn D; Bühler B; Schmid A J Ind Microbiol Biotechnol; 2015 Jun; 42(6):851-66. PubMed ID: 25877162 [TBL] [Abstract][Full Text] [Related]
16. Solid support membrane-aerated catalytic biofilm reactor for the continuous synthesis of (S)-styrene oxide at gram scale. Halan B; Letzel T; Schmid A; Buehler K Biotechnol J; 2014 Oct; 9(10):1339-49. PubMed ID: 25111808 [TBL] [Abstract][Full Text] [Related]
17. [Asymmetric biosynthesis of chiral styrene oxide]. Wu J; Cheng SH; Sha Q; Yang L; Sun WR Sheng Wu Gong Cheng Xue Bao; 2000 Sep; 16(5):627-30. PubMed ID: 11191772 [TBL] [Abstract][Full Text] [Related]
18. [Tn5-mutagenesis of the styrene-degrading strain Pseudomonas sp. Y2. Analysis of transformation products and DNA-scopy of the mutants obtained]. Iakimov MM; Rogozhin IS; Kal'deron E; Matveeva LN; Karavaĭtseva GI; Bezborodov AM; Rogaev EI Prikl Biokhim Mikrobiol; 1994; 30(1):55-63. PubMed ID: 8146112 [TBL] [Abstract][Full Text] [Related]
19. Expression and characterization of styrene monooxygenases of Rhodococcus sp. ST-5 and ST-10 for synthesizing enantiopure (S)-epoxides. Toda H; Imae R; Komio T; Itoh N Appl Microbiol Biotechnol; 2012 Oct; 96(2):407-18. PubMed ID: 22258641 [TBL] [Abstract][Full Text] [Related]
20. Engineered catalytic biofilms for continuous large scale production of n-octanol and (S)-styrene oxide. Gross R; Buehler K; Schmid A Biotechnol Bioeng; 2013 Feb; 110(2):424-36. PubMed ID: 22886684 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]