These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 17514755)

  • 41. Free nitrous acid inhibition on anoxic phosphorus uptake and denitrification by poly-phosphate accumulating organisms.
    Zhou Y; Pijuan M; Yuan Z
    Biotechnol Bioeng; 2007 Nov; 98(4):903-12. PubMed ID: 17486651
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantitative estimation of the role of denitrifying phosphate accumulating organisms in nutrient removal.
    Shoji T; Satoh H; Mino T
    Water Sci Technol; 2003; 47(11):23-9. PubMed ID: 12906267
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Distributed state simulation of endogenous processes in biological wastewater treatment.
    Schuler AJ; Jassby D
    Biotechnol Bioeng; 2007 Aug; 97(5):1087-97. PubMed ID: 17216663
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Diversity matters: dynamic simulation of distributed bacterial states in suspended growth biological wastewater treatment systems.
    Schuler AJ
    Biotechnol Bioeng; 2005 Jul; 91(1):62-74. PubMed ID: 15880520
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Model-based evaluation of competition between polyphosphate- and glycogen-accumulating organisms.
    Whang LM; Filipe CD; Park JK
    Water Res; 2007 Mar; 41(6):1312-24. PubMed ID: 17275874
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Obtaining highly enriched cultures of Candidatus Accumulibacter phosphates through alternating carbon sources.
    Lu H; Oehmen A; Virdis B; Keller J; Yuan Z
    Water Res; 2006 Dec; 40(20):3838-48. PubMed ID: 17070894
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Incorporating microbial ecology into the metabolic modelling of polyphosphate accumulating organisms and glycogen accumulating organisms.
    Oehmen A; Carvalho G; Lopez-Vazquez CM; van Loosdrecht MC; Reis MA
    Water Res; 2010 Sep; 44(17):4992-5004. PubMed ID: 20650504
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Temperature effects on glycogen accumulating organisms.
    Lopez-Vazquez CM; Hooijmans CM; Brdjanovic D; Gijzen HJ; van Loosdrecht MC
    Water Res; 2009 Jun; 43(11):2852-64. PubMed ID: 19380157
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The secret to achieving reliable biological phosphorus removal.
    Thomas MP
    Water Sci Technol; 2008; 58(6):1231-6. PubMed ID: 18845861
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multilevel correlations in the biological phosphorus removal process: From bacterial enrichment to conductivity-based metabolic batch tests and polyphosphatase assays.
    Weissbrodt DG; Maillard J; Brovelli A; Chabrelie A; May J; Holliger C
    Biotechnol Bioeng; 2014 Dec; 111(12):2421-35. PubMed ID: 24975745
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Monitoring the impact of bioaugmentation on the start up of biological phosphorus removal in a laboratory scale activated sludge ecosystem.
    Dabert P; Delgenès JP; Godon JJ
    Appl Microbiol Biotechnol; 2005 Feb; 66(5):575-88. PubMed ID: 15322774
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A sequencing batch reactor system for high-level biological nitrogen and phosphorus removal from abattoir wastewater.
    Lemaire R; Yuan Z; Bernet N; Marcos M; Yilmaz G; Keller J
    Biodegradation; 2009 Jun; 20(3):339-50. PubMed ID: 18937035
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Process hydraulics, distributed bacterial states, and biological phosphorus removal from wastewater.
    Schuler AJ
    Biotechnol Bioeng; 2006 Aug; 94(5):909-20. PubMed ID: 16548000
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of aspartate and glutamate on the fate of enhanced biological phosphorus removal process and microbial community structure.
    Zengin GE; Artan N; Orhon D; Satoh H; Mino T
    Bioresour Technol; 2011 Jan; 102(2):894-903. PubMed ID: 20926291
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced biological phosphorus removal in an anaerobic-aerobic sequencing batch reactor: characteristics of carbon metabolism.
    Jeon CO; Lee DS; Park JM
    Water Environ Res; 2001; 73(3):295-300. PubMed ID: 11561588
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage.
    Acevedo B; Oehmen A; Carvalho G; Seco A; Borrás L; Barat R
    Water Res; 2012 Apr; 46(6):1889-900. PubMed ID: 22297158
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phylogenetic and physiological diversity of tetrad-forming organisms in deteriorated biological phosphorus removal systems.
    Tsai CS; Liu WT
    Water Sci Technol; 2002; 46(1-2):179-84. PubMed ID: 12216620
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A novel post denitrification configuration for phosphorus recovery using polyphosphate accumulating organisms.
    Wong PY; Cheng KY; Kaksonen AH; Sutton DC; Ginige MP
    Water Res; 2013 Nov; 47(17):6488-95. PubMed ID: 24041527
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A modification to the Activated Sludge Model No. 2 based on the competition between phosphorus-accumulating organisms and glycogen-accumulating organisms.
    Manga J; Ferrer J; Garcia-Usach F; Seco A
    Water Sci Technol; 2001; 43(11):161-71. PubMed ID: 11443958
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Uncertainty and variability in enhanced biological phosphorus removal (EBPR) stoichiometry: consequences for process modelling and optimization.
    Houweling D; Comeau Y; Takács I; Dold P
    Water Sci Technol; 2010; 61(7):1793-800. PubMed ID: 20371938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.