These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 17515223)

  • 61. Event-related brain potentials reveal multiple stages in the perceptual organization of sound.
    Winkler I; Takegata R; Sussman E
    Brain Res Cogn Brain Res; 2005 Sep; 25(1):291-9. PubMed ID: 16005616
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Listen up! Processing of intensity change differs for vocal and nonvocal sounds.
    Schirmer A; Simpson E; Escoffier N
    Brain Res; 2007 Oct; 1176():103-12. PubMed ID: 17900543
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Auditory streaming affects the processing of successive deviant and standard sounds.
    Müller D; Widmann A; Schröger E
    Psychophysiology; 2005 Nov; 42(6):668-76. PubMed ID: 16364062
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Which kind of transition is important for sound representation? An event-related potential study.
    Weise A; Bendixen A; Müller D; Schröger E
    Brain Res; 2012 Jun; 1464():30-42. PubMed ID: 22613810
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effects of acoustic gradient noise from functional magnetic resonance imaging on auditory processing as reflected by event-related brain potentials.
    Novitski N; Alho K; Korzyukov O; Carlson S; Martinkauppi S; Escera C; Rinne T; Aronen HJ; Näätänen R
    Neuroimage; 2001 Jul; 14(1 Pt 1):244-51. PubMed ID: 11525334
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Musical expertise affects attention as reflected by auditory-evoked gamma-band activity in human EEG.
    Ott CG; Stier C; Herrmann CS; Jäncke L
    Neuroreport; 2013 Jun; 24(9):445-50. PubMed ID: 23660630
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Pitch accents in context: how listeners process accentuation in referential communication.
    Bögels S; Schriefers H; Vonk W; Chwilla DJ
    Neuropsychologia; 2011 Jun; 49(7):2022-36. PubMed ID: 21458470
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Temporal structure model of binaural masking level difference.
    Albeck Y; Nebenzahl I; Lewis A
    J Acoust Soc Am; 1992 Sep; 92(3):1389-93. PubMed ID: 1401525
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The role of intensity upon pitch perception in cochlear implant recipients.
    Arnoldner C; Kaider A; Hamzavi J
    Laryngoscope; 2006 Oct; 116(10):1760-5. PubMed ID: 17003738
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Change detection in newborns using a multiple deviant paradigm: a study using magnetoencephalography.
    Sambeth A; Pakarinen S; Ruohio K; Fellman V; van Zuijen TL; Huotilainen M
    Clin Neurophysiol; 2009 Mar; 120(3):530-8. PubMed ID: 19211303
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Selective and divided attention modulates auditory-vocal integration in the processing of pitch feedback errors.
    Liu Y; Hu H; Jones JA; Guo Z; Li W; Chen X; Liu P; Liu H
    Eur J Neurosci; 2015 Aug; 42(3):1895-904. PubMed ID: 25969928
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Robust decoding of selective auditory attention from MEG in a competing-speaker environment via state-space modeling.
    Akram S; Presacco A; Simon JZ; Shamma SA; Babadi B
    Neuroimage; 2016 Jan; 124(Pt A):906-917. PubMed ID: 26436490
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Involvement of the Serotonin Transporter Gene in Accurate Subcortical Speech Encoding.
    Selinger L; Zarnowiec K; Via M; Clemente IC; Escera C
    J Neurosci; 2016 Oct; 36(42):10782-10790. PubMed ID: 27798133
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Human auditory cortical responses to pitch and to pitch strength.
    Barker D; Plack CJ; Hall DA
    Neuroreport; 2011 Feb; 22(3):111-5. PubMed ID: 21178644
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Predictive processing of pitch trends in newborn infants.
    Háden GP; Németh R; Török M; Winkler I
    Brain Res; 2015 Nov; 1626():14-20. PubMed ID: 25749483
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Attentional control via synaptic gain mechanisms in auditory streaming.
    Rankin J; Rinzel J
    Brain Res; 2022 Mar; 1778():147720. PubMed ID: 34785256
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Formation and development of temporary connections involving unperceived and perceived acoustic stimuli.
    Voronin LG; Novikov PP; Volkov EV; Dubynin VA
    Neurosci Behav Physiol; 1987; 17(4):321-5. PubMed ID: 3683824
    [No Abstract]   [Full Text] [Related]  

  • 78. An auditory Stroop effect for pitch, loudness, and time.
    Morgan AL; Brandt JF
    Brain Lang; 1989 May; 36(4):592-603. PubMed ID: 2720372
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Temporal coherence and attention in auditory scene analysis.
    Shamma SA; Elhilali M; Micheyl C
    Trends Neurosci; 2011 Mar; 34(3):114-23. PubMed ID: 21196054
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Properties of auditory stream formation.
    Moore BC; Gockel HE
    Philos Trans R Soc Lond B Biol Sci; 2012 Apr; 367(1591):919-31. PubMed ID: 22371614
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.