BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1751528)

  • 21. Characterization of Sertoli cells cultured in the bicameral chamber system: relationship between formation of permeability barriers and polarized secretion of transferrin.
    Onoda M; Suárez-Quian CA; Djakiew D; Dym M
    Biol Reprod; 1990 Oct; 43(4):672-83. PubMed ID: 2289017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transferrin stimulates iron absorption, exocytosis, and secretion in cultured intestinal cells.
    Nuñez MT; Tapia V
    Am J Physiol; 1999 May; 276(5):C1085-90. PubMed ID: 10329956
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolism of L-alpha-methyldopa in cultured human intestinal epithelial (Caco-2) cell monolayers. Comparison with metabolism in vivo.
    Chikhale PJ; Borchardt RT
    Drug Metab Dispos; 1994; 22(4):592-600. PubMed ID: 7956735
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism and kinetics of transcellular transport of a new beta-lactam antibiotic loracarbef across an intestinal epithelial membrane model system (Caco-2).
    Hu M; Chen J; Zhu Y; Dantzig AH; Stratford RE; Kuhfeld MT
    Pharm Res; 1994 Oct; 11(10):1405-13. PubMed ID: 7855043
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetic analysis of 59Fe movement across the intestinal wall in duodenal rat segments ex vivo.
    Schümann K; Elsenhans B; Forth W
    Am J Physiol; 1999 Feb; 276(2):G431-40. PubMed ID: 9950817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cytotoxic effects of pamidronate on monolayers of human intestinal epithelial (Caco-2) cells and its epithelial transport.
    Twiss IM; de Water R; den Hartigh J; Sparidans R; Ramp-Koopmanschap W; Brill H; Wijdeveld M; Vermeij P
    J Pharm Sci; 1994 May; 83(5):699-703. PubMed ID: 8071824
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High specific activity heme-Fe and its application for studying heme-Fe metabolism in Caco-2 cell monolayers.
    Follett JR; Suzuki YA; Lönnerdal B
    Am J Physiol Gastrointest Liver Physiol; 2002 Nov; 283(5):G1125-31. PubMed ID: 12381526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Iron absorption by CaCo 2 cells cultivated in serum-free medium as in vitro model of the human intestinal epithelial barrier.
    Halleux C; Schneider YJ
    J Cell Physiol; 1994 Jan; 158(1):17-28. PubMed ID: 8263023
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of transepithelial transport of iron by hepcidin.
    Mena NP; Esparza AL; Núñez MT
    Biol Res; 2006; 39(1):191-3. PubMed ID: 16629180
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Apo-transferrin is internalized and routed differently from Fe-transferrin by caco-2 cells: a confocal microscopy study of vesicular transport in intestinal cells.
    Alvarez-Hernandez X; Smith M; Glass J
    Blood; 2000 Jan; 95(2):721-3. PubMed ID: 10627487
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transport of celiprolol across human intestinal epithelial (Caco-2) cells: mediation of secretion by multiple transporters including P-glycoprotein.
    Karlsson J; Kuo SM; Ziemniak J; Artursson P
    Br J Pharmacol; 1993 Nov; 110(3):1009-16. PubMed ID: 7905337
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vesicular transport and apotransferrin in intestinal iron absorption, as shown in the Caco-2 cell model.
    Moriya M; Linder MC
    Am J Physiol Gastrointest Liver Physiol; 2006 Feb; 290(2):G301-9. PubMed ID: 16179601
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ascorbate offsets the inhibitory effect of inositol phosphates on iron uptake and transport by Caco-2 cells.
    Han O; Failla ML; Hill AD; Morris ER; Smith JC
    Proc Soc Exp Biol Med; 1995 Oct; 210(1):50-6. PubMed ID: 7675798
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of L-alpha-methyldopa transport through a monolayer of polarized human intestinal epithelial cells (Caco-2).
    Hu M; Borchardt RT
    Pharm Res; 1990 Dec; 7(12):1313-9. PubMed ID: 2095572
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The transport of vitamin B12 through polarized monolayers of Caco-2 cells.
    Dix CJ; Hassan IF; Obray HY; Shah R; Wilson G
    Gastroenterology; 1990 May; 98(5 Pt 1):1272-9. PubMed ID: 2323519
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Study of the subcellular localization of 59Fe and iron-binding proteins in the duodenal mucosa of pregnant and nonpregnant rats.
    Batey RG; Gallagher ND
    Gastroenterology; 1977 Aug; 73(2):267-72. PubMed ID: 406160
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Duodenal cytochrome B expression stimulates iron uptake by human intestinal epithelial cells.
    Latunde-Dada GO; Simpson RJ; McKie AT
    J Nutr; 2008 Jun; 138(6):991-5. PubMed ID: 18492824
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intestinal absorption of 59Fe from neutron-activated commercial oral iron(III)-citrate and iron(III)-hydroxide-polymaltose complexes in man.
    Heinrich HC
    Arzneimittelforschung; 1987 Jan; 37(1A):105-7. PubMed ID: 3566863
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Different behaviour of 63Ni and 59Fe during absorption in iron-deficient and iron-adequate jejunal rat segments ex vivo.
    Müller-Fassbender M; Elsenhans B; McKie AT; Schümann K
    Toxicology; 2003 Mar; 185(1-2):141-53. PubMed ID: 12505452
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioactive dietary polyphenolic compounds reduce nonheme iron transport across human intestinal cell monolayers.
    Kim EY; Ham SK; Shigenaga MK; Han O
    J Nutr; 2008 Sep; 138(9):1647-51. PubMed ID: 18716164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.