These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 1751535)

  • 21. Anomalous potentials on bilayer lipid membranes in the presence of usnic acid: Markin-Sokolov versus Nernst-Donnan equilibrium.
    Rokitskaya TI; Kotova EA; Antonenko YN
    Bioelectrochemistry; 2021 Oct; 141():107825. PubMed ID: 34030021
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The size of the unstirred layer as a function of the solute diffusion coefficient.
    Pohl P; Saparov SM; Antonenko YN
    Biophys J; 1998 Sep; 75(3):1403-9. PubMed ID: 9726941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Effect of beta-lactam antibiotics on lipid bilayer membranes. I. Penicillin antibiotics].
    Taisova AS; Korolev NP; Griaznova NS; Zinchenko EIa; Lesovaia ZI
    Antibiot Khimioter; 1989 Jul; 34(7):496-504. PubMed ID: 2818081
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diffusion of weak acids across lipid bilayer membranes: effects of chemical reactions in the unstirred layers.
    Gutknecht J; Tosteson DC
    Science; 1973 Dec; 182(4118):1258-61. PubMed ID: 4752218
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [The effect of the composition of phospholipid bilayer membranes on the steady state kinetic transfer of protons].
    Antonenko IuN; Kovbasniuk ON; Iaguzhinskiĭ LS
    Biokhimiia; 1993 Jul; 58(7):987-96. PubMed ID: 8364128
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of a transmembrane osmotic flux on the ion concentration distribution in the immediate membrane vicinity measured by microelectrodes.
    Pohl P; Saparov SM; Antonenko YN
    Biophys J; 1997 Apr; 72(4):1711-8. PubMed ID: 9083675
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct measurement of pH in the rat lens by ion-sensitive microelectrodes.
    Bassnett S; Duncan G
    Exp Eye Res; 1985 Apr; 40(4):585-90. PubMed ID: 4007073
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Angiotensin II-induced formation of ionic channels in bilayer lipid membranes.
    Hianik T; Laputková G
    Gen Physiol Biophys; 1991 Feb; 10(1):19-30. PubMed ID: 1714413
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of Ion Transport through a Single Channel of Gramicidin A in Bilayer Lipid Membranes.
    Kubota S; Shirai O; Kitazumi Y; Kano K
    Anal Sci; 2016; 32(2):189-92. PubMed ID: 26860564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transport methods for probing the barrier domain of lipid bilayer membranes.
    Xiang TX; Chen X; Anderson BD
    Biophys J; 1992 Jul; 63(1):78-88. PubMed ID: 1420875
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unstirred layer effects on calculations of the potential difference across an ion exchange membrane.
    French RJ
    Biophys J; 1977 Apr; 18(1):53-61. PubMed ID: 856317
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pseudo painting/air bubble technique for planar lipid bilayers.
    Braun CJ; Baer T; Moroni A; Thiel G
    J Neurosci Methods; 2014 Aug; 233():13-7. PubMed ID: 24938397
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diffusion of carbon dioxide through lipid bilayer membranes: effects of carbonic anhydrase, bicarbonate, and unstirred layers.
    Gutknecht J; Bisson MA; Tosteson FC
    J Gen Physiol; 1977 Jun; 69(6):779-94. PubMed ID: 408462
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Possible mechanism of oscillations of the bilayer lipid membrane reflectivity induced by electrostriction].
    Pasechnik VI
    Biofizika; 1982; 27(3):469-74. PubMed ID: 7093331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Study of the interaction of myoglobin with lipid bilayer membranes by potentiodynamic method].
    Grigor'ev PA; Postnikova GB; Shekhovtsova EA
    Biofizika; 2012; 57(1):68-74. PubMed ID: 22567910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modification of ion transport in lipid bilayer membranes in the presence of 2,4-dichlorophenoxyacetic acid. II. Suppression of tetraphenylborate conductance and changes of interfacial potentials.
    Smejtek P; Paulis-Illangasekare M
    Biophys J; 1979 Jun; 26(3):467-87. PubMed ID: 262428
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measurements of intracellular pH in Necturus antral mucosa by microelectrode technique.
    Ashley SW; Soybel DI; Cheung LY
    Am J Physiol; 1986 May; 250(5 Pt 1):G625-32. PubMed ID: 3085517
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Effect of electrolyte composition of various solutions on potential-sensitive ion channels, formed by syringomycin E in lipid bilayers].
    Kaulin IuA; Shchagina LV
    Tsitologiia; 1999; 41(7):610-4. PubMed ID: 10496022
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Interaction between filamentous actin and lipid bilayer causes the increase of syringomycin E channel-forming activity].
    Bessonov AN; Gur'nev FA; Kuznetsova IM; Takemoto JY; Turoverov KK; Malev VV; Shchagina LV
    Tsitologiia; 2004; 46(7):628-33. PubMed ID: 15473373
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Potentiodynamic method of studying the reaction between liposomes and bilayer lipid membranes].
    Egorova EM; Chernomordik LV; Abidor IG; Chizmadzhev IuA
    Biofizika; 1981; 26(2):363-5. PubMed ID: 7260145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.