BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 17516034)

  • 1. Neutralization of animal virus infectivity by antibody.
    Reading SA; Dimmock NJ
    Arch Virol; 2007; 152(6):1047-59. PubMed ID: 17516034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of rabies virus neutralization.
    Flamand A; Raux H; Gaudin Y; Ruigrok RW
    Virology; 1993 May; 194(1):302-13. PubMed ID: 7683158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IgG neutralization of type A influenza viruses and the inhibition of the endosomal fusion stage of the infectious pathway in BHK cells.
    Outlaw MC; Dimmock NJ
    Virology; 1993 Aug; 195(2):413-21. PubMed ID: 8337821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Insights into Reovirus σ1 Interactions with Two Neutralizing Antibodies.
    Dietrich MH; Ogden KM; Katen SP; Reiss K; Sutherland DM; Carnahan RH; Goff M; Cooper T; Dermody TS; Stehle T
    J Virol; 2017 Feb; 91(4):. PubMed ID: 27928010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Docking of a human rhinovirus neutralizing antibody onto the viral capsid.
    Tormo J; Centeno NB; Fontana E; Bubendorfer T; Fita I; Blaas D
    Proteins; 1995 Dec; 23(4):491-501. PubMed ID: 8749845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutralization of virus.
    McKeating J
    Methods Mol Biol; 1992; 8():89-93. PubMed ID: 21390703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural details of HIV-1 recognition by the broadly neutralizing monoclonal antibody 2F5: epitope conformation, antigen-recognition loop mobility, and anion-binding site.
    Julien JP; Bryson S; Nieva JL; Pai EF
    J Mol Biol; 2008 Dec; 384(2):377-92. PubMed ID: 18824005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bivalent binding of a neutralising antibody to a calicivirus involves the torsional flexibility of the antibody hinge.
    Thouvenin E; Laurent S; Madelaine MF; Rasschaert D; Vautherot JF; Hewat EA
    J Mol Biol; 1997 Jul; 270(2):238-46. PubMed ID: 9236125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of virion incorporation of Ebolavirus glycoprotein: effects on attachment, cellular entry and neutralization.
    Marzi A; Wegele A; Pöhlmann S
    Virology; 2006 Sep; 352(2):345-56. PubMed ID: 16777170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two influenza A virus-specific Fabs neutralize by inhibiting virus attachment to target cells, while neutralization by their IgGs is complex and occurs simultaneously through fusion inhibition and attachment inhibition.
    Edwards MJ; Dimmock NJ
    Virology; 2000 Dec; 278(2):423-35. PubMed ID: 11118365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational alteration in foot-and-mouth disease virus virion capsid structure after complexing with monospecific antibody.
    McCullough KC; Smale CJ; Carpenter WC; Crowther JR; Brocchi E; De Simone F
    Immunology; 1987 Jan; 60(1):75-82. PubMed ID: 3028937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occupancy and mechanism in antibody-mediated neutralization of animal viruses.
    Klasse PJ; Sattentau QJ
    J Gen Virol; 2002 Sep; 83(Pt 9):2091-2108. PubMed ID: 12185262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viral reproductive strategies: How can lytic viruses be evolutionarily competitive?
    Komarova NL
    J Theor Biol; 2007 Dec; 249(4):766-84. PubMed ID: 17945261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of an antigenic site that contains a dominant, type-specific neutralization determinant on the envelope protein domain III (ED3) of dengue 2 virus.
    Gromowski GD; Barrett AD
    Virology; 2007 Sep; 366(2):349-60. PubMed ID: 17719070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time frames for neutralization during the human immunodeficiency virus type 1 entry phase, as monitored in synchronously infected cell cultures.
    Haim H; Steiner I; Panet A
    J Virol; 2007 Apr; 81(7):3525-34. PubMed ID: 17251303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neutralization susceptibility of African swine fever virus is dependent on the phospholipid composition of viral particles.
    Gómez-Puertas P; Oviedo JM; Rodríguez F; Coll J; Escribano JM
    Virology; 1997 Feb; 228(2):180-9. PubMed ID: 9123824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restricted occupancy models for neutralization of HIV virions and populations.
    Magnus C; Regoes RR
    J Theor Biol; 2011 Aug; 283(1):192-202. PubMed ID: 21683711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Valency of antibody binding to virions and its determination by surface plasmon resonance.
    Dimmock NJ; Hardy SA
    Rev Med Virol; 2004; 14(2):123-35. PubMed ID: 15027004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased susceptibility of human respiratory syncytial virus to neutralization by anti-fusion protein antibodies on adaptation to replication in cell culture.
    Marsh R; Connor A; Gias E; Toms GL
    J Med Virol; 2007 Jun; 79(6):829-37. PubMed ID: 17457900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins.
    Lok SM; Kostyuchenko V; Nybakken GE; Holdaway HA; Battisti AJ; Sukupolvi-Petty S; Sedlak D; Fremont DH; Chipman PR; Roehrig JT; Diamond MS; Kuhn RJ; Rossmann MG
    Nat Struct Mol Biol; 2008 Mar; 15(3):312-7. PubMed ID: 18264114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.