These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 17516079)

  • 1. Differences in regulation of carbohydrate metabolism during early fruit development between domesticated tomato and two wild relatives.
    Kortstee AJ; Appeldoorn NJ; Oortwijn ME; Visser RG
    Planta; 2007 Sep; 226(4):929-39. PubMed ID: 17516079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-assisted analysis of sugar metabolism throughout tomato fruit development reveals enzyme and carrier properties in relation to vacuole expansion.
    Beauvoit BP; Colombié S; Monier A; Andrieu MH; Biais B; Bénard C; Chéniclet C; Dieuaide-Noubhani M; Nazaret C; Mazat JP; Gibon Y
    Plant Cell; 2014 Aug; 26(8):3224-42. PubMed ID: 25139005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Metabolic Regulation by a Chromosome Segment from a Wild Relative During Fruit Development in a Tomato Introgression Line, IL8-3.
    Ikeda H; Shibuya T; Imanishi S; Aso H; Nishiyama M; Kanayama Y
    Plant Cell Physiol; 2016 Jun; 57(6):1257-70. PubMed ID: 27076398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural genetic variation for expression of a SWEET transporter among wild species of Solanum lycopersicum (tomato) determines the hexose composition of ripening tomato fruit.
    Shammai A; Petreikov M; Yeselson Y; Faigenboim A; Moy-Komemi M; Cohen S; Cohen D; Besaulov E; Efrati A; Houminer N; Bar M; Ast T; Schuldiner M; Klemens PAW; Neuhaus E; Baxter CJ; Rickett D; Bonnet J; White R; Giovannoni JJ; Levin I; Schaffer A
    Plant J; 2018 Oct; 96(2):343-357. PubMed ID: 30044900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remarkable reproducibility of enzyme activity profiles in tomato fruits grown under contrasting environments provides a roadmap for studies of fruit metabolism.
    Biais B; Bénard C; Beauvoit B; Colombié S; Prodhomme D; Ménard G; Bernillon S; Gehl B; Gautier H; Ballias P; Mazat JP; Sweetlove L; Génard M; Gibon Y
    Plant Physiol; 2014 Mar; 164(3):1204-21. PubMed ID: 24474652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. 'Micro-Tom') fruits in an ABA- and osmotic stress-independent manner.
    Yin YG; Kobayashi Y; Sanuki A; Kondo S; Fukuda N; Ezura H; Sugaya S; Matsukura C
    J Exp Bot; 2010; 61(2):563-74. PubMed ID: 19995825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TAI vacuolar invertase orthologs: the interspecific variability in tomato plants (Solanum section Lycopersicon).
    Slugina MA; Shchennikova AV; Kochieva EZ
    Mol Genet Genomics; 2017 Oct; 292(5):1123-1138. PubMed ID: 28634826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of small heat shock protein (SlHSP17.7) gene by cell wall invertase inhibitor (SlCIF1) gene involved in sugar metabolism in tomato.
    Zhang N; Shi J; Zhao H; Jiang J
    Gene; 2018 Dec; 679():90-99. PubMed ID: 30176314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative N-glycoproteome analysis provides novel insights into the regulation mechanism in tomato (solanum lycopersicum L.) During fruit ripening process.
    Zhang X; Tang H; Du H; Liu Z; Bao Z; Shi Q
    Plant Sci; 2020 Apr; 293():110413. PubMed ID: 32081262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NTRC Plays a Crucial Role in Starch Metabolism, Redox Balance, and Tomato Fruit Growth.
    Hou LY; Ehrlich M; Thormählen I; Lehmann M; Krahnert I; Obata T; Cejudo FJ; Fernie AR; Geigenberger P
    Plant Physiol; 2019 Nov; 181(3):976-992. PubMed ID: 31527089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional disruption of cell wall invertase inhibitor by genome editing increases sugar content of tomato fruit without decrease fruit weight.
    Kawaguchi K; Takei-Hoshi R; Yoshikawa I; Nishida K; Kobayashi M; Kusano M; Lu Y; Ariizumi T; Ezura H; Otagaki S; Matsumoto S; Shiratake K
    Sci Rep; 2021 Nov; 11(1):21534. PubMed ID: 34728724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genotypic variability for antioxidant and quality parameters among tomato cultivars, hybrids, cherry tomatoes and wild species.
    Kavitha P; Shivashankara KS; Rao VK; Sadashiva AT; Ravishankar KV; Sathish GJ
    J Sci Food Agric; 2014 Mar; 94(5):993-9. PubMed ID: 24037905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fruit carbohydrate metabolism in an introgression line of tomato with increased fruit soluble solids.
    Baxter CJ; Carrari F; Bauke A; Overy S; Hill SA; Quick PW; Fernie AR; Sweetlove LJ
    Plant Cell Physiol; 2005 Mar; 46(3):425-37. PubMed ID: 15695458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell Wall Invertase Promotes Fruit Set under Heat Stress by Suppressing ROS-Independent Cell Death.
    Liu YH; Offler CE; Ruan YL
    Plant Physiol; 2016 Sep; 172(1):163-80. PubMed ID: 27462084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA interference of LIN5 in tomato confirms its role in controlling Brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility.
    Zanor MI; Osorio S; Nunes-Nesi A; Carrari F; Lohse M; Usadel B; Kühn C; Bleiss W; Giavalisco P; Willmitzer L; Sulpice R; Zhou YH; Fernie AR
    Plant Physiol; 2009 Jul; 150(3):1204-18. PubMed ID: 19439574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in the distribution of cell wall polysaccharides in early fruit pericarp and ovule, from fruit set to early fruit development, in tomato (Solanum lycopersicum).
    Terao A; Hyodo H; Satoh S; Iwai H
    J Plant Res; 2013 Sep; 126(5):719-28. PubMed ID: 23455617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SlNAP1 promotes tomato fruit ripening by regulating carbohydrate metabolism.
    Hou X; Liu H; Li Y; Zhang Z; Wang T; Liang C; Wang C; Li C; Liao W
    Plant Physiol Biochem; 2024 Oct; 215():109079. PubMed ID: 39213944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of leaf and fruit metabolism in two tomato (Solanum lycopersicum L.) genotypes varying in total soluble solids.
    Luengwilai K; Fiehn OE; Beckles DM
    J Agric Food Chem; 2010 Nov; 58(22):11790-800. PubMed ID: 21033662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of the carbohydrate binding module from Solanum lycopersicum expansin 1 (Sl-EXP1) modifies tomato fruit firmness and Botrytis cinerea susceptibility.
    Perini MA; Sin IN; Villarreal NM; Marina M; Powell AL; Martínez GA; Civello PM
    Plant Physiol Biochem; 2017 Apr; 113():122-132. PubMed ID: 28196350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development.
    Roessner-Tunali U; Hegemann B; Lytovchenko A; Carrari F; Bruedigam C; Granot D; Fernie AR
    Plant Physiol; 2003 Sep; 133(1):84-99. PubMed ID: 12970477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.