These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 17516172)
1. An ultra-thin PDMS membrane as a bio/micro-nano interface: fabrication and characterization. Thangawng AL; Ruoff RS; Swartz MA; Glucksberg MR Biomed Microdevices; 2007 Aug; 9(4):587-95. PubMed ID: 17516172 [TBL] [Abstract][Full Text] [Related]
2. Study of cellular behaviors on concave and convex microstructures fabricated from elastic PDMS membranes. Park JY; Lee DH; Lee EJ; Lee SH Lab Chip; 2009 Jul; 9(14):2043-9. PubMed ID: 19568673 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of reversibly adhesive fluidic devices using magnetism. Rafat M; Raad DR; Rowat AC; Auguste DT Lab Chip; 2009 Oct; 9(20):3016-9. PubMed ID: 19789760 [TBL] [Abstract][Full Text] [Related]
7. Demonstration of a PDMS-based bio-microactuator using cultured cardiomyocytes to drive polymer micropillars. Tanaka Y; Morishima K; Shimizu T; Kikuchi A; Yamato M; Okano T; Kitamori T Lab Chip; 2006 Feb; 6(2):230-5. PubMed ID: 16450032 [TBL] [Abstract][Full Text] [Related]
8. Influence of different amount of Au on the wetting behavior of PDMS membrane. Feng JT; Zhao YP Biomed Microdevices; 2008 Feb; 10(1):65-72. PubMed ID: 17659443 [TBL] [Abstract][Full Text] [Related]
9. Development of an integrated microfluidic platform for dynamic oxygen sensing and delivery in a flowing medium. Vollmer AP; Probstein RF; Gilbert R; Thorsen T Lab Chip; 2005 Oct; 5(10):1059-66. PubMed ID: 16175261 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of three-dimensional microarray structures by controlling the thickness and elasticity of poly(dimethylsiloxane) membrane. Lee DH; Park JY; Lee EJ; Choi YY; Kwon GH; Kim BM; Lee SH Biomed Microdevices; 2010 Feb; 12(1):49-54. PubMed ID: 19777351 [TBL] [Abstract][Full Text] [Related]
11. Plastic-PDMS bonding for high pressure hydrolytically stable active microfluidics. Lee KS; Ram RJ Lab Chip; 2009 Jun; 9(11):1618-24. PubMed ID: 19458871 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous fabrication of PDMS through-holes for three-dimensional microfluidic applications. Mosadegh B; Agarwal M; Torisawa YS; Takayama S Lab Chip; 2010 Aug; 10(15):1983-6. PubMed ID: 20502832 [TBL] [Abstract][Full Text] [Related]
14. A micro-spherical heart pump powered by cultured cardiomyocytes. Tanaka Y; Sato K; Shimizu T; Yamato M; Okano T; Kitamori T Lab Chip; 2007 Feb; 7(2):207-12. PubMed ID: 17268623 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of UV epoxy resin masters for the replication of PDMS-based microchips. Pan YJ; Yang RJ Biomed Microdevices; 2007 Aug; 9(4):555-63. PubMed ID: 17508287 [TBL] [Abstract][Full Text] [Related]
16. Polymeric nanofiber web-based artificial renal microfluidic chip. Lee KH; Kim DJ; Min BG; Lee SH Biomed Microdevices; 2007 Aug; 9(4):435-42. PubMed ID: 17265147 [TBL] [Abstract][Full Text] [Related]
18. PMMA/PDMS valves and pumps for disposable microfluidics. Zhang W; Lin S; Wang C; Hu J; Li C; Zhuang Z; Zhou Y; Mathies RA; Yang CJ Lab Chip; 2009 Nov; 9(21):3088-94. PubMed ID: 19823724 [TBL] [Abstract][Full Text] [Related]
19. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Mata A; Fleischman AJ; Roy S Biomed Microdevices; 2005 Dec; 7(4):281-93. PubMed ID: 16404506 [TBL] [Abstract][Full Text] [Related]
20. Method for microfluidic whole-chip temperature measurement using thin-film poly(dimethylsiloxane)/rhodamine B. Samy R; Glawdel T; Ren CL Anal Chem; 2008 Jan; 80(2):369-75. PubMed ID: 18081260 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]