These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 17516941)
1. Prediction of digestible energy content of extruded dog food by in vitro analyses. Hervera M; Baucells MD; Blanch F; Castrillo C J Anim Physiol Anim Nutr (Berl); 2007 Jun; 91(5-6):205-9. PubMed ID: 17516941 [TBL] [Abstract][Full Text] [Related]
2. Prediction of digestible energy value of extruded dog food: comparison of methods. Hervera M; Baucells MD; Torre C; Buj A; Castrillo C J Anim Physiol Anim Nutr (Berl); 2008 Jun; 92(3):253-9. PubMed ID: 18477305 [TBL] [Abstract][Full Text] [Related]
3. Energy evaluation of extruded compound foods for dogs by near-infrared spectroscopy. Castrillo C; Baucells M; Vicente F; Muñoz F; Andueza D J Anim Physiol Anim Nutr (Berl); 2005; 89(3-6):194-8. PubMed ID: 15787994 [TBL] [Abstract][Full Text] [Related]
4. Prediction of digestible protein content of dry extruded dog foods: comparison of methods. Hervera M; Baucells MD; González G; Pérez E; Castrillo C J Anim Physiol Anim Nutr (Berl); 2009 Jun; 93(3):366-72. PubMed ID: 19646110 [TBL] [Abstract][Full Text] [Related]
5. Prediction of in vivo apparent total tract energy digestibility of barley in grower pigs using an in vitro digestibility technique. Regmi PR; Sauer WC; Zijlstra RT J Anim Sci; 2008 Oct; 86(10):2619-26. PubMed ID: 18567720 [TBL] [Abstract][Full Text] [Related]
6. Variation in digestible energy content of Australian sweet lupins (Lupinus angustifolius L.) and the development of prediction equations for its estimation. Kim JC; Mullan BP; Heo JM; Hernandez A; Pluske JR J Anim Sci; 2009 Aug; 87(8):2565-73. PubMed ID: 19395516 [TBL] [Abstract][Full Text] [Related]
7. In vitro digestibility techniques to predict apparent total tract energy digestibility of wheat in grower pigs. Regmi PR; Ferguson NS; Zijlstra RT J Anim Sci; 2009 Nov; 87(11):3620-9. PubMed ID: 19648497 [TBL] [Abstract][Full Text] [Related]
8. Prediction of the energy content of tallgrass prairie hay. Olson KC; Cochran RC; Titgemeyer EC; Mathis CP; Jones TJ; Heldt JS J Anim Sci; 2008 Jun; 86(6):1372-81. PubMed ID: 18272848 [TBL] [Abstract][Full Text] [Related]
9. The impact of dietary protein source on observed and predicted metabolizable energy of dry extruded dog foods. Yamka RM; McLeod KR; Harmon DL; Freetly HC; Schoenherr WD J Anim Sci; 2007 Jan; 85(1):204-12. PubMed ID: 17179557 [TBL] [Abstract][Full Text] [Related]
10. Nutritional evaluation of commercial dry dog foods by near infrared reflectance spectroscopy. Alomar D; Hodgkinson S; Abarzúa D; Fuchslocher R; Alvarado C; Rosales E J Anim Physiol Anim Nutr (Berl); 2006 Jun; 90(5-6):223-9. PubMed ID: 16684143 [TBL] [Abstract][Full Text] [Related]
11. The effect of crude fibre on apparent digestibility and digestible energy content of extruded dog foods. Castrillo C; Vicente F; Guada JA J Anim Physiol Anim Nutr (Berl); 2001 Aug; 85(7-8):231-6. PubMed ID: 11686794 [TBL] [Abstract][Full Text] [Related]
12. Effects of xylanase supplementation on the apparent digestibility and digestible content of energy, amino acids, phosphorus, and calcium in wheat and wheat by-products from dry milling fed to grower pigs. Nortey TN; Patience JF; Sands JS; Trottier NL; Zijlstra RT J Anim Sci; 2008 Dec; 86(12):3450-64. PubMed ID: 18676730 [TBL] [Abstract][Full Text] [Related]
14. Predicting metabolisable energy in commercial rat diets: physiological fuel values may be misleading. Bielohuby M; Bodendorf K; Brandstetter H; Bidlingmaier M; Kienzle E Br J Nutr; 2010 May; 103(10):1525-33. PubMed ID: 20047701 [TBL] [Abstract][Full Text] [Related]
15. Use of near-infrared spectroscopy to predict energy content of commercial dog food. Hervera M; Castrillo C; Albanell E; Baucells MD J Anim Sci; 2012 Dec; 90(12):4401-7. PubMed ID: 23100585 [TBL] [Abstract][Full Text] [Related]
16. In vitro gas production profiles to estimate extent and effective first-order rate of neutral detergent fiber digestion in the rumen. Huhtanen P; Seppälä A; Ots M; Ahvenjärvi S; Rinne M J Anim Sci; 2008 Mar; 86(3):651-9. PubMed ID: 17998429 [TBL] [Abstract][Full Text] [Related]
17. Assessment of nutritional adequacy of the protein in dog foods by trials on growing rats. Hegedüs M; Fekete S; Solti L; Andrásofszky E; Pallós L Acta Vet Hung; 1998; 46(1):61-70. PubMed ID: 9704511 [TBL] [Abstract][Full Text] [Related]
18. Effect of linseed cake supplementation on digestibility and faecal and haematological parameters in dogs. Kempe R; Saastamoinen M J Anim Physiol Anim Nutr (Berl); 2007 Aug; 91(7-8):319-25. PubMed ID: 17615003 [TBL] [Abstract][Full Text] [Related]
19. Empirical prediction of net portal appearance of volatile fatty acids, glucose, and their secondary metabolites (beta-hydroxybutyrate, lactate) from dietary characteristics in ruminants: A meta-analysis approach. Loncke C; Ortigues-Marty I; Vernet J; Lapierre H; Sauvant D; Nozière P J Anim Sci; 2009 Jan; 87(1):253-68. PubMed ID: 18791148 [TBL] [Abstract][Full Text] [Related]
20. Prediction of digestible energy and gross energy digestibility of feeds and diets in ostriches. Bovera F; Nizza S; Attia YA; Di Meo C; Piccolo G; Nizza A Br Poult Sci; 2014; 55(4):518-23. PubMed ID: 24945235 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]