These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
674 related articles for article (PubMed ID: 17517121)
21. Is Cytotoxin K from Bacillus cereus a bona fide enterotoxin? Castiaux V; Liu X; Delbrassinne L; Mahillon J Int J Food Microbiol; 2015 Oct; 211():79-85. PubMed ID: 26186121 [TBL] [Abstract][Full Text] [Related]
22. Construction of a non toxic chimeric protein (L1-L2-B) of Haemolysin BL from Bacillus cereus and its application in HBL toxin detection. Kumar TD; Murali HS; Batra HV J Microbiol Methods; 2008 Dec; 75(3):472-7. PubMed ID: 18718851 [TBL] [Abstract][Full Text] [Related]
23. Molecular characterization of Bacillus cereus toxigenic strains isolated from different food matrices in Jordan. Batchoun R; Al-Sha'er AI; Khabour OF Foodborne Pathog Dis; 2011 Nov; 8(11):1153-8. PubMed ID: 21714637 [TBL] [Abstract][Full Text] [Related]
24. Detection of toxigenic Bacillus cereus and Bacillus thuringiensis spores in U.S. rice. Ankolekar C; Rahmati T; Labbé RG Int J Food Microbiol; 2009 Jan; 128(3):460-6. PubMed ID: 19027973 [TBL] [Abstract][Full Text] [Related]
25. Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis. Hansen BM; Hendriksen NB Appl Environ Microbiol; 2001 Jan; 67(1):185-9. PubMed ID: 11133444 [TBL] [Abstract][Full Text] [Related]
26. PCR detection of cytK gene in Bacillus cereus group strains isolated from food samples. Oltuszak-Walczak E; Walczak P J Microbiol Methods; 2013 Nov; 95(2):295-301. PubMed ID: 24060693 [TBL] [Abstract][Full Text] [Related]
27. Evaluation of phenotypic and PCR-based approaches for routine analysis of Bacillus cereus group foodborne isolates. Martínez-Blanch JF; Sánchez G; Garay E; Aznar R Antonie Van Leeuwenhoek; 2011 Mar; 99(3):697-709. PubMed ID: 21191654 [TBL] [Abstract][Full Text] [Related]
29. A subset of naturally isolated Bacillus strains show extreme virulence to the free-living nematodes Caenorhabditis elegans and Pristionchus pacificus. Rae R; Iatsenko I; Witte H; Sommer RJ Environ Microbiol; 2010 Nov; 12(11):3007-21. PubMed ID: 20626457 [TBL] [Abstract][Full Text] [Related]
30. Comparative Bioinformatics and Experimental Analysis of the Intergenic Regulatory Regions of Bacillus cereus hbl and nhe Enterotoxin Operons and the Impact of CodY on Virulence Heterogeneity. Böhm ME; Krey VM; Jeßberger N; Frenzel E; Scherer S Front Microbiol; 2016; 7():768. PubMed ID: 27252687 [TBL] [Abstract][Full Text] [Related]
31. Phenotypic and genotypic comparisons reveal a broad distribution and heterogeneity of hemolysin BL genes among Bacillus cereus isolates. Thaenthanee S; Wong AC; Panbangred W Int J Food Microbiol; 2005 Nov; 105(2):203-12. PubMed ID: 16081178 [TBL] [Abstract][Full Text] [Related]
32. Determination of the toxic potential of Bacillus cereus isolates by quantitative enterotoxin analyses. Moravek M; Dietrich R; Buerk C; Broussolle V; Guinebretière MH; Granum PE; Nguyen-The C; Märtlbauer E FEMS Microbiol Lett; 2006 Apr; 257(2):293-8. PubMed ID: 16553866 [TBL] [Abstract][Full Text] [Related]
33. Toxigenic potential and antimicrobial susceptibility of Bacillus cereus group bacteria isolated from Tunisian foodstuffs. Gdoura-Ben Amor M; Jan S; Baron F; Grosset N; Culot A; Gdoura R; Gautier M; Techer C BMC Microbiol; 2019 Aug; 19(1):196. PubMed ID: 31445510 [TBL] [Abstract][Full Text] [Related]
34. Study on cytotoxicity and nucleotide sequences of enterotoxin FM of Bacillus cereus isolated from various food sources. Boonchai N; Asano SI; Bando H; Wiwat C J Med Assoc Thai; 2008 Sep; 91(9):1425-32. PubMed ID: 18843874 [TBL] [Abstract][Full Text] [Related]
35. Characteristics of enterotoxin distribution, hemolysis, lecithinase, and starch hydrolysis of Bacillus cereus isolated from infant formulas and ready-to-eat foods. Hwang JY; Park JH J Dairy Sci; 2015 Mar; 98(3):1652-60. PubMed ID: 25597976 [TBL] [Abstract][Full Text] [Related]
36. Identification of emetic toxin producing Bacillus cereus strains by a novel molecular assay. Ehling-Schulz M; Fricker M; Scherer S FEMS Microbiol Lett; 2004 Mar; 232(2):189-95. PubMed ID: 15033238 [TBL] [Abstract][Full Text] [Related]
37. Molecular identification and safety of Bacillus species involved in the fermentation of African oil beans (Pentaclethra macrophylla Benth) for production of Ugba. Ahaotu I; Anyogu A; Njoku OH; Odu NN; Sutherland JP; Ouoba LI Int J Food Microbiol; 2013 Mar; 162(1):95-104. PubMed ID: 23376783 [TBL] [Abstract][Full Text] [Related]
38. Common occurrence of enterotoxin genes and enterotoxicity in Bacillus thuringiensis. Gaviria Rivera AM; Granum PE; Priest FG FEMS Microbiol Lett; 2000 Sep; 190(1):151-5. PubMed ID: 10981706 [TBL] [Abstract][Full Text] [Related]
39. Application of MALDI-TOF mass spectrometry for the detection of enterotoxins produced by pathogenic strains of the Bacillus cereus group. Tsilia V; Devreese B; de Baenst I; Mesuere B; Rajkovic A; Uyttendaele M; Van de Wiele T; Heyndrickx M Anal Bioanal Chem; 2012 Oct; 404(6-7):1691-702. PubMed ID: 22875537 [TBL] [Abstract][Full Text] [Related]
40. Evidence for a further enterotoxin complex produced by Bacillus cereus. Granum PE; Andersson A; Gayther C; te Giffel M; Larsen H; Lund T; O'Sullivan K FEMS Microbiol Lett; 1996 Aug; 141(2-3):145-9. PubMed ID: 8768515 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]