BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 17517132)

  • 1. TISs-ST: a web server to evaluate polymorphic translation initiation sites and their reflections on the secretory targets.
    Vicentini R; Menossi M
    BMC Bioinformatics; 2007 May; 8():160. PubMed ID: 17517132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TITER: predicting translation initiation sites by deep learning.
    Zhang S; Hu H; Jiang T; Zhang L; Zeng J
    Bioinformatics; 2017 Jul; 33(14):i234-i242. PubMed ID: 28881981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MetWAMer: eukaryotic translation initiation site prediction.
    Sparks ME; Brendel V
    BMC Bioinformatics; 2008 Sep; 9():381. PubMed ID: 18801175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational approach for calculating the probability of eukaryotic translation initiation from ribo-seq data that takes into account leaky scanning.
    Michel AM; Andreev DE; Baranov PV
    BMC Bioinformatics; 2014 Nov; 15(1):380. PubMed ID: 25413677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling alternative translation initiation sites in plants reveals evolutionarily conserved
    Wu TY; Li YR; Chang KJ; Fang JC; Urano D; Liu MJ
    Genome Res; 2024 Mar; 34(2):272-285. PubMed ID: 38479836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prevalence of alternative AUG and non-AUG translation initiators and their regulatory effects across plants.
    Li YR; Liu MJ
    Genome Res; 2020 Oct; 30(10):1418-1433. PubMed ID: 32973042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy improvement for identifying translation initiation sites in microbial genomes.
    Zhu HQ; Hu GQ; Ouyang ZQ; Wang J; She ZS
    Bioinformatics; 2004 Dec; 20(18):3308-17. PubMed ID: 15247104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A class of edit kernels for SVMs to predict translation initiation sites in eukaryotic mRNAs.
    Li H; Jiang T
    J Comput Biol; 2005; 12(6):702-18. PubMed ID: 16108712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of translation initiation sites in human mRNA sequences with AUG start codon in weak Kozak context: A neural network approach.
    Tikole S; Sankararamakrishnan R
    Biochem Biophys Res Commun; 2008 May; 369(4):1166-8. PubMed ID: 18342624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TIR predictor and optimizer: Web-tools for accurate prediction of translation initiation rate and precision gene design in Saccharomyces cerevisiae.
    Chakarborty S; Irshad IU; Mahima ; Sharma AK
    Biotechnol J; 2024 May; 19(5):e2400081. PubMed ID: 38719586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TICO: a tool for improving predictions of prokaryotic translation initiation sites.
    Tech M; Pfeifer N; Morgenstern B; Meinicke P
    Bioinformatics; 2005 Sep; 21(17):3568-9. PubMed ID: 15994191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ProTISA: a comprehensive resource for translation initiation site annotation in prokaryotic genomes.
    Hu GQ; Zheng X; Yang YF; Ortet P; She ZS; Zhu H
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D114-9. PubMed ID: 17942412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hon-yaku: a biology-driven Bayesian methodology for identifying translation initiation sites in prokaryotes.
    Makita Y; de Hoon MJ; Danchin A
    BMC Bioinformatics; 2007 Feb; 8():47. PubMed ID: 17286872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TISdb: a database for alternative translation initiation in mammalian cells.
    Wan J; Qian SB
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D845-50. PubMed ID: 24203712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AUG_hairpin: prediction of a downstream secondary structure influencing the recognition of a translation start site.
    Kochetov AV; Palyanov A; Titov II; Grigorovich D; Sarai A; Kolchanov NA
    BMC Bioinformatics; 2007 Aug; 8():318. PubMed ID: 17760957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dragon TIS Spotter: an Arabidopsis-derived predictor of translation initiation sites in plants.
    Magana-Mora A; Ashoor H; Jankovic BR; Kamau A; Awara K; Chowdhary R; Archer JA; Bajic VB
    Bioinformatics; 2013 Jan; 29(1):117-8. PubMed ID: 23110968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transterm: a database of mRNAs and translational control elements.
    Jacobs GH; Rackham O; Stockwell PA; Tate W; Brown CM
    Nucleic Acids Res; 2002 Jan; 30(1):310-1. PubMed ID: 11752323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combinatorial analysis of translation dynamics reveals eIF2 dependence of translation initiation at near-cognate codons.
    Ichihara K; Matsumoto A; Nishida H; Kito Y; Shimizu H; Shichino Y; Iwasaki S; Imami K; Ishihama Y; Nakayama KI
    Nucleic Acids Res; 2021 Jul; 49(13):7298-7317. PubMed ID: 34226921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognition of translation initiation sites of eukaryotic genes based on an EM algorithm.
    Wang Y; Ou H; Guo F
    J Comput Biol; 2003; 10(5):699-708. PubMed ID: 14633394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of noncanonical translation initiation sites through mass spectrometric analysis of protein N termini.
    Na CH; Barbhuiya MA; Kim MS; Verbruggen S; Eacker SM; Pletnikova O; Troncoso JC; Halushka MK; Menschaert G; Overall CM; Pandey A
    Genome Res; 2018 Jan; 28(1):25-36. PubMed ID: 29162641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.