BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 17517431)

  • 1. Neural probe design for reduced tissue encapsulation in CNS.
    Seymour JP; Kipke DR
    Biomaterials; 2007 Sep; 28(25):3594-607. PubMed ID: 17517431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays.
    He W; McConnell GC; Bellamkonda RV
    J Neural Eng; 2006 Dec; 3(4):316-26. PubMed ID: 17124336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of polymer neural probes with sub-cellular features for reduced tissue encapsulation.
    Seymour JP; Kipke DR
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4606-9. PubMed ID: 17947102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebral astrocyte response to micromachined silicon implants.
    Turner JN; Shain W; Szarowski DH; Andersen M; Martins S; Isaacson M; Craighead H
    Exp Neurol; 1999 Mar; 156(1):33-49. PubMed ID: 10192775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Encapsulation of an integrated neural interface device with Parylene C.
    Hsu JM; Rieth L; Normann RA; Tathireddy P; Solzbacher F
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):23-9. PubMed ID: 19224715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the in vivo glial response to miniaturized parylene cortical probes coated with an ultra-fast degrading polymer to aid insertion.
    Lo MC; Wang S; Singh S; Damodaran VB; Ahmed I; Coffey K; Barker D; Saste K; Kals K; Kaplan HM; Kohn J; Shreiber DI; Zahn JD
    J Neural Eng; 2018 Jun; 15(3):036002. PubMed ID: 29485103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parylene flexible neural probes integrated with microfluidic channels.
    Takeuchi S; Ziegler D; Yoshida Y; Mabuchi K; Suzuki T
    Lab Chip; 2005 May; 5(5):519-23. PubMed ID: 15856088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term stability of intracortical recordings using perforated and arrayed Parylene sheath electrodes.
    Hara SA; Kim BJ; Kuo JT; Lee CD; Meng E; Pikov V
    J Neural Eng; 2016 Dec; 13(6):066020. PubMed ID: 27819256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction force and cortical tissue reaction of silicon microelectrode arrays implanted in the rat brain.
    McConnell GC; Schneider TM; Owens DJ; Bellamkonda RV
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1097-107. PubMed ID: 17554828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface immobilization of neural adhesion molecule L1 for improving the biocompatibility of chronic neural probes: In vitro characterization.
    Azemi E; Stauffer WR; Gostock MS; Lagenaur CF; Cui XT
    Acta Biomater; 2008 Sep; 4(5):1208-17. PubMed ID: 18420473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model neural prostheses with integrated microfluidics: a potential intervention strategy for controlling reactive cell and tissue responses.
    Retterer ST; Smith KL; Bjornsson CS; Neeves KB; Spence AJ; Turner JN; Shain W; Isaacson MS
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):2063-73. PubMed ID: 15536908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of the tissue response to chronically implanted Parylene-C-coated and uncoated planar silicon microelectrode arrays in rat cortex.
    Winslow BD; Christensen MB; Yang WK; Solzbacher F; Tresco PA
    Biomaterials; 2010 Dec; 31(35):9163-72. PubMed ID: 20561678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel flexible Parylene neural probe with 3D sheath structure for enhancing tissue integration.
    Kuo JT; Kim BJ; Hara SA; Lee CD; Gutierrez CA; Hoang TQ; Meng E
    Lab Chip; 2013 Feb; 13(4):554-61. PubMed ID: 23160191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunohistochemical detection of StarD6 in the rat nervous system.
    Chang IY; Kim JH; Hwang G; Song PI; Song RJ; Kim JW; Yoon SP
    Neuroreport; 2007 Oct; 18(15):1615-9. PubMed ID: 17885612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guided growth of neurons and glia using microfabricated patterns of parylene-C on a SiO2 background.
    Delivopoulos E; Murray AF; MacLeod NK; Curtis JC
    Biomaterials; 2009 Apr; 30(11):2048-58. PubMed ID: 19138795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional hydrogel cultures for modeling changes in tissue impedance around microfabricated neural probes.
    Frampton JP; Hynd MR; Williams JC; Shuler ML; Shain W
    J Neural Eng; 2007 Dec; 4(4):399-409. PubMed ID: 18057507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developing a tissue-engineered neural-electrical relay using encapsulated neuronal constructs on conducting polymer fibers.
    Cullen DK; R Patel A; Doorish JF; Smith DH; Pfister BJ
    J Neural Eng; 2008 Dec; 5(4):374-84. PubMed ID: 18827311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A flexible depth probe using liquid crystal polymer.
    Lee SE; Jun SB; Lee HJ; Kim J; Lee SW; Im C; Shin HC; Chang JW; Kim SJ
    IEEE Trans Biomed Eng; 2012 Jul; 59(7):2085-94. PubMed ID: 22718688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attractin/mahogany protein expression in the rodent central nervous system.
    Nakadate K; Sakakibara S; Ueda S
    J Comp Neurol; 2008 May; 508(1):94-111. PubMed ID: 18302151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dexamethasone treatment reduces astroglia responses to inserted neuroprosthetic devices in rat neocortex.
    Spataro L; Dilgen J; Retterer S; Spence AJ; Isaacson M; Turner JN; Shain W
    Exp Neurol; 2005 Aug; 194(2):289-300. PubMed ID: 16022859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.