BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 17517682)

  • 1. Stop-signal reaction-time task performance: role of prefrontal cortex and subthalamic nucleus.
    Eagle DM; Baunez C; Hutcheson DM; Lehmann O; Shah AP; Robbins TW
    Cereb Cortex; 2008 Jan; 18(1):178-88. PubMed ID: 17517682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lesions of the medial prefrontal cortex or nucleus accumbens core do not impair inhibitory control in rats performing a stop-signal reaction time task.
    Eagle DM; Robbins TW
    Behav Brain Res; 2003 Nov; 146(1-2):131-44. PubMed ID: 14643466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical and subcortical contributions to Stop signal response inhibition: role of the subthalamic nucleus.
    Aron AR; Poldrack RA
    J Neurosci; 2006 Mar; 26(9):2424-33. PubMed ID: 16510720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lesions to the subthalamic nucleus decrease impulsive choice but impair autoshaping in rats: the importance of the basal ganglia in Pavlovian conditioning and impulse control.
    Winstanley CA; Baunez C; Theobald DE; Robbins TW
    Eur J Neurosci; 2005 Jun; 21(11):3107-16. PubMed ID: 15978020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subcortical processes of motor response inhibition during a stop signal task.
    Li CS; Yan P; Sinha R; Lee TW
    Neuroimage; 2008 Jul; 41(4):1352-63. PubMed ID: 18485743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aging and inhibitory control of action: cortico-subthalamic connection strength predicts stopping performance.
    Coxon JP; Van Impe A; Wenderoth N; Swinnen SP
    J Neurosci; 2012 Jun; 32(24):8401-12. PubMed ID: 22699920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional disconnection of the medial prefrontal cortex and subthalamic nucleus in attentional performance: evidence for corticosubthalamic interaction.
    Chudasama Y; Baunez C; Robbins TW
    J Neurosci; 2003 Jul; 23(13):5477-85. PubMed ID: 12843247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects of modafinil and methylphenidate on stop-signal reaction time task performance in the rat, and interactions with the dopamine receptor antagonist cis-flupenthixol.
    Eagle DM; Tufft MR; Goodchild HL; Robbins TW
    Psychopharmacology (Berl); 2007 Jun; 192(2):193-206. PubMed ID: 17277934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prefrontal-Subthalamic Hyperdirect Pathway Modulates Movement Inhibition in Humans.
    Chen W; de Hemptinne C; Miller AM; Leibbrand M; Little SJ; Lim DA; Larson PS; Starr PA
    Neuron; 2020 May; 106(4):579-588.e3. PubMed ID: 32155442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity.
    Chudasama Y; Passetti F; Rhodes SE; Lopian D; Desai A; Robbins TW
    Behav Brain Res; 2003 Nov; 146(1-2):105-19. PubMed ID: 14643464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition and impulsivity: behavioral and neural basis of response control.
    Bari A; Robbins TW
    Prog Neurobiol; 2013 Sep; 108():44-79. PubMed ID: 23856628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreased cortical and subcortical response to inhibition control after sleep deprivation.
    Zhao R; Zhang X; Fei N; Zhu Y; Sun J; Liu P; Yang X; Qin W
    Brain Imaging Behav; 2019 Jun; 13(3):638-650. PubMed ID: 29748772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Right Superior Frontal Gyrus and Individual Variation in Proactive Control of Impulsive Response.
    Hu S; Ide JS; Zhang S; Li CR
    J Neurosci; 2016 Dec; 36(50):12688-12696. PubMed ID: 27974616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociable effects of noradrenaline, dopamine, and serotonin uptake blockade on stop task performance in rats.
    Bari A; Eagle DM; Mar AC; Robinson ES; Robbins TW
    Psychopharmacology (Berl); 2009 Aug; 205(2):273-83. PubMed ID: 19404616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct roles of dorsal and ventral subthalamic neurons in action selection and cancellation.
    Mosher CP; Mamelak AN; Malekmohammadi M; Pouratian N; Rutishauser U
    Neuron; 2021 Mar; 109(5):869-881.e6. PubMed ID: 33482087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The prefrontal cortex achieves inhibitory control by facilitating subcortical motor pathway connectivity.
    Rae CL; Hughes LE; Anderson MC; Rowe JB
    J Neurosci; 2015 Jan; 35(2):786-94. PubMed ID: 25589771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the lateral prefrontal cortex in inhibitory motor control.
    Krämer UM; Solbakk AK; Funderud I; Løvstad M; Endestad T; Knight RT
    Cortex; 2013 Mar; 49(3):837-49. PubMed ID: 22699024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of the subthalamic nucleus and impulsivity: release your horses.
    Ballanger B; van Eimeren T; Moro E; Lozano AM; Hamani C; Boulinguez P; Pellecchia G; Houle S; Poon YY; Lang AE; Strafella AP
    Ann Neurol; 2009 Dec; 66(6):817-24. PubMed ID: 20035509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the subthalamic nucleus in response inhibition: evidence from local field potential recordings in the human subthalamic nucleus.
    Ray NJ; Brittain JS; Holland P; Joundi RA; Stein JF; Aziz TZ; Jenkinson N
    Neuroimage; 2012 Mar; 60(1):271-8. PubMed ID: 22209815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep brain stimulation of the subthalamic nucleus alters the cortical profile of response inhibition in the beta frequency band: a scalp EEG study in Parkinson's disease.
    Swann N; Poizner H; Houser M; Gould S; Greenhouse I; Cai W; Strunk J; George J; Aron AR
    J Neurosci; 2011 Apr; 31(15):5721-9. PubMed ID: 21490213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.