BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 17517839)

  • 21. Differential selection of single-step AmpC or efflux mutants of Pseudomonas aeruginosa by using cefepime, ceftazidime, or ceftobiprole.
    Queenan AM; Shang W; Bush K; Flamm RK
    Antimicrob Agents Chemother; 2010 Oct; 54(10):4092-7. PubMed ID: 20606064
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selection of cross-resistance following exposure of Pseudomonas aeruginosa clinical isolates to ciprofloxacin or cefepime.
    Alyaseen SA; Piper KE; Rouse MS; Steckelberg JM; Patel R
    Antimicrob Agents Chemother; 2005 Jun; 49(6):2543-5. PubMed ID: 15917569
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of novel genes responsible for overexpression of ampC in Pseudomonas aeruginosa PAO1.
    Tsutsumi Y; Tomita H; Tanimoto K
    Antimicrob Agents Chemother; 2013 Dec; 57(12):5987-93. PubMed ID: 24041903
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of AmpC overexpression on outcomes of patients with Pseudomonas aeruginosa bacteremia.
    Tam VH; Chang KT; Schilling AN; LaRocco MT; Genty LO; Garey KW
    Diagn Microbiol Infect Dis; 2009 Mar; 63(3):279-85. PubMed ID: 19135330
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selection and molecular characterization of ceftazidime/avibactam-resistant mutants in Pseudomonas aeruginosa strains containing derepressed AmpC.
    Lahiri SD; Walkup GK; Whiteaker JD; Palmer T; McCormack K; Tanudra MA; Nash TJ; Thresher J; Johnstone MR; Hajec L; Livchak S; McLaughlin RE; Alm RA
    J Antimicrob Chemother; 2015; 70(6):1650-8. PubMed ID: 25645206
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of Pseudomonas aeruginosa isolated from clinical and environmental samples in Minia, Egypt: prevalence, antibiogram and resistance mechanisms.
    Gad GF; El-Domany RA; Zaki S; Ashour HM
    J Antimicrob Chemother; 2007 Nov; 60(5):1010-7. PubMed ID: 17906321
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Involvement of Fe uptake systems and AmpC β-lactamase in susceptibility to the siderophore monosulfactam BAL30072 in Pseudomonas aeruginosa.
    van Delden C; Page MG; Köhler T
    Antimicrob Agents Chemother; 2013 May; 57(5):2095-102. PubMed ID: 23422914
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pseudomonas aeruginosa deficient in 8-oxodeoxyguanine repair system shows a high frequency of resistance to ciprofloxacin.
    Morero NR; Argaraña CE
    FEMS Microbiol Lett; 2009 Jan; 290(2):217-26. PubMed ID: 19025574
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of antibiotic resistance and up-regulation of the antimutator gene pfpI in mutator Pseudomonas aeruginosa due to inactivation of two DNA oxidative repair genes (mutY, mutM).
    Mandsberg LF; Maciá MD; Bergmann KR; Christiansen LE; Alhede M; Kirkby N; Høiby N; Oliver A; Ciofu O
    FEMS Microbiol Lett; 2011 Nov; 324(1):28-37. PubMed ID: 22092761
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression stability of six housekeeping genes: A proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR.
    Savli H; Karadenizli A; Kolayli F; Gundes S; Ozbek U; Vahaboglu H
    J Med Microbiol; 2003 May; 52(Pt 5):403-408. PubMed ID: 12721316
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cell Wall Recycling-Linked Coregulation of AmpC and PenB β-Lactamases through ampD Mutations in Burkholderia cenocepacia.
    Hwang J; Kim HS
    Antimicrob Agents Chemother; 2015 Dec; 59(12):7602-10. PubMed ID: 26416862
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Real-Time Monitoring of
    Zaborskyte G; Andersen JB; Kragh KN; Ciofu O
    Antimicrob Agents Chemother; 2017 Mar; 61(3):. PubMed ID: 27993856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deciphering β-lactamase-independent β-lactam resistance evolution trajectories in Pseudomonas aeruginosa.
    Cabot G; Florit-Mendoza L; Sánchez-Diener I; Zamorano L; Oliver A
    J Antimicrob Chemother; 2018 Dec; 73(12):3322-3331. PubMed ID: 30189050
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PBP3 inhibition elicits adaptive responses in Pseudomonas aeruginosa.
    Blázquez J; Gómez-Gómez JM; Oliver A; Juan C; Kapur V; Martín S
    Mol Microbiol; 2006 Oct; 62(1):84-99. PubMed ID: 16956383
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of high mutation rates on the mechanisms and dynamics of in vitro and in vivo resistance development to single or combined antipseudomonal agents.
    Plasencia V; Borrell N; Maciá MD; Moya B; Pérez JL; Oliver A
    Antimicrob Agents Chemother; 2007 Jul; 51(7):2574-81. PubMed ID: 17470655
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ciprofloxacin induction of a susceptibility determinant in Pseudomonas aeruginosa.
    Brazas MD; Hancock RE
    Antimicrob Agents Chemother; 2005 Aug; 49(8):3222-7. PubMed ID: 16048929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inactivation of the glycoside hydrolase NagZ attenuates antipseudomonal beta-lactam resistance in Pseudomonas aeruginosa.
    Asgarali A; Stubbs KA; Oliver A; Vocadlo DJ; Mark BL
    Antimicrob Agents Chemother; 2009 Jun; 53(6):2274-82. PubMed ID: 19273679
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An ampD gene in Pseudomonas aeruginosa encodes a negative regulator of AmpC beta-lactamase expression.
    Langaee TY; Dargis M; Huletsky A
    Antimicrob Agents Chemother; 1998 Dec; 42(12):3296-300. PubMed ID: 9835532
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NagZ inactivation prevents and reverts beta-lactam resistance, driven by AmpD and PBP 4 mutations, in Pseudomonas aeruginosa.
    Zamorano L; Reeve TM; Deng L; Juan C; Moyá B; Cabot G; Vocadlo DJ; Mark BL; Oliver A
    Antimicrob Agents Chemother; 2010 Sep; 54(9):3557-63. PubMed ID: 20566764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structure of the AmpR effector binding domain provides insight into the molecular regulation of inducible ampc beta-lactamase.
    Balcewich MD; Reeve TM; Orlikow EA; Donald LJ; Vocadlo DJ; Mark BL
    J Mol Biol; 2010 Jul; 400(5):998-1010. PubMed ID: 20594961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.