These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 17517839)

  • 41. Changes to its peptidoglycan-remodeling enzyme repertoire modulate β-lactam resistance in Pseudomonas aeruginosa.
    Cavallari JF; Lamers RP; Scheurwater EM; Matos AL; Burrows LL
    Antimicrob Agents Chemother; 2013 Jul; 57(7):3078-84. PubMed ID: 23612194
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pseudomonas aeruginosa isolates from patients with cystic fibrosis have different beta-lactamase expression phenotypes but are homogeneous in the ampC-ampR genetic region.
    Campbell JI; Ciofu O; Høiby N
    Antimicrob Agents Chemother; 1997 Jun; 41(6):1380-4. PubMed ID: 9174204
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of the MexXY multidrug efflux pump in moderate aminoglycoside resistance in Pseudomonas aeruginosa isolates from Pseudomonas mastitis.
    Chuanchuen R; Wannaprasat W; Ajariyakhajorn K; Schweizer HP
    Microbiol Immunol; 2008 Aug; 52(8):392-8. PubMed ID: 18667038
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Expression of AmpC beta-lactamase in Enterobacter cloacae isolated from retail ground beef, cattle farm and processing facilities.
    Kim SH; Wei CI
    J Appl Microbiol; 2007 Aug; 103(2):400-8. PubMed ID: 17650200
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of Low-Molecular-Mass Penicillin-Binding Proteins, NagZ and AmpR in AmpC β-lactamase Regulation of
    Liu C; Li C; Chen Y; Hao H; Liang J; Duan R; Guo Z; Zhang J; Zhao Z; Jing H; Wang X; Shao S
    Front Cell Infect Microbiol; 2017; 7():425. PubMed ID: 29021974
    [No Abstract]   [Full Text] [Related]  

  • 46. Analyses of ampC gene expression in Serratia marcescens reveal new regulatory properties.
    Mahlen SD; Morrow SS; Abdalhamid B; Hanson ND
    J Antimicrob Chemother; 2003 Apr; 51(4):791-802. PubMed ID: 12654751
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of AmpC beta-lactamase gene in Pseudomonas aeruginosa .
    Ni M; Zhang D; Qi J
    J Huazhong Univ Sci Technolog Med Sci; 2005; 25(1):17-9, 23. PubMed ID: 15934297
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The AmpC phenotype in Norwegian clinical isolates of Escherichia coli is associated with an acquired ISEcp1-like ampC element or hyperproduction of the endogenous AmpC.
    Haldorsen B; Aasnaes B; Dahl KH; Hanssen AM; Simonsen GS; Walsh TR; Sundsfjord A; Lundblad EW
    J Antimicrob Chemother; 2008 Oct; 62(4):694-702. PubMed ID: 18583329
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of a novel gene related to antibiotic susceptibility in Pseudomonas aeruginosa.
    Shen L; Ma Y; Liang H
    J Antibiot (Tokyo); 2012 Feb; 65(2):59-65. PubMed ID: 22146126
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evolution of extended-spectrum beta-lactamases in a MutS-deficient Pseudomonas aeruginosa hypermutator.
    Driffield KL; Bostock JM; Miller K; O'neill AJ; Hobbs JK; Chopra I
    J Antimicrob Chemother; 2006 Oct; 58(4):905-7. PubMed ID: 16901912
    [No Abstract]   [Full Text] [Related]  

  • 51. Impact of AmpC Derepression on Fitness and Virulence: the Mechanism or the Pathway?
    Pérez-Gallego M; Torrens G; Castillo-Vera J; Moya B; Zamorano L; Cabot G; Hultenby K; Albertí S; Mellroth P; Henriques-Normark B; Normark S; Oliver A; Juan C
    mBio; 2016 Oct; 7(5):. PubMed ID: 27795406
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pseudomonas aeruginosa develops Ciprofloxacin resistance from low to high level with distinctive proteome changes.
    Peng J; Cao J; Ng FM; Hill J
    J Proteomics; 2017 Jan; 152():75-87. PubMed ID: 27771372
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Defining the Pseudomonas aeruginosa SOS response and its role in the global response to the antibiotic ciprofloxacin.
    Cirz RT; O'Neill BM; Hammond JA; Head SR; Romesberg FE
    J Bacteriol; 2006 Oct; 188(20):7101-10. PubMed ID: 17015649
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sensitivity testing of Pseudomonas aeruginosa to ciprofloxacin: comparison of the modified Stokes' method with MIC results obtained by the Etest.
    Galloway A; Wright J; Murphy O; Dickinson G
    J Antimicrob Chemother; 1999 Feb; 43(2):314-5. PubMed ID: 11252344
    [No Abstract]   [Full Text] [Related]  

  • 55. Induction of mexCD-oprJ operon for a multidrug efflux pump by disinfectants in wild-type Pseudomonas aeruginosa PAO1.
    Morita Y; Murata T; Mima T; Shiota S; Kuroda T; Mizushima T; Gotoh N; Nishino T; Tsuchiya T
    J Antimicrob Chemother; 2003 Apr; 51(4):991-4. PubMed ID: 12654738
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vitro activity of meropenem in combination with ciprofloxacin against clinical isolates of Pseudomonas aeruginosa.
    Solak S; Willke A; Ergönül O; Tekeli E
    Int J Antimicrob Agents; 2005 Feb; 25(2):181-2. PubMed ID: 15664492
    [No Abstract]   [Full Text] [Related]  

  • 57. Increased expression of two multidrug transporter-like genes is associated with ethidium bromide and ciprofloxacin resistance in Mycoplasma hominis.
    Raherison S; Gonzalez P; Renaudin H; Charron A; Bébéar C; Bébéar CM
    Antimicrob Agents Chemother; 2005 Jan; 49(1):421-4. PubMed ID: 15616325
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dissemination of Pseudomonas aeruginosa producing SPM-1-like and IMP-1-like metallo-beta-lactamases in hospitals from southern Brazil.
    Martins AF; Zavascki AP; Gaspareto PB; Barth AL
    Infection; 2007 Dec; 35(6):457-60. PubMed ID: 18034208
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural and functional characterization of Pseudomonas aeruginosa global regulator AmpR.
    Caille O; Zincke D; Merighi M; Balasubramanian D; Kumari H; Kong KF; Silva-Herzog E; Narasimhan G; Schneper L; Lory S; Mathee K
    J Bacteriol; 2014 Nov; 196(22):3890-902. PubMed ID: 25182487
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spontaneous mutation frequency and emergence of ciprofloxacin resistance in Campylobacter jejuni and Campylobacter coli.
    Hänninen ML; Hannula M
    J Antimicrob Chemother; 2007 Dec; 60(6):1251-7. PubMed ID: 17911389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.