BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 17517898)

  • 1. A robust, target-driven, cell-based assay for checkpoint kinase 1 inhibitors.
    Ish T; Sootome H; King AJ; Suda M; Noro N; Yamashita K; Noumi T; Ishii T
    J Biomol Screen; 2007 Sep; 12(6):809-17. PubMed ID: 17517898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cell-based screening method for specifically detecting kinase activity.
    Suda M; Ishii T; Sootome H; King AJ; Shibahara M; Noro N; Yamashita K; Noumi T
    Anal Bioanal Chem; 2008 Jan; 390(1):343-8. PubMed ID: 17985120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The MDM2 ubiquitination signal in the DNA-binding domain of p53 forms a docking site for calcium calmodulin kinase superfamily members.
    Craig AL; Chrystal JA; Fraser JA; Sphyris N; Lin Y; Harrison BJ; Scott MT; Dornreiter I; Hupp TR
    Mol Cell Biol; 2007 May; 27(9):3542-55. PubMed ID: 17339337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Checkpoint kinase 1 down-regulation by an inducible small interfering RNA expression system sensitized in vivo tumors to treatment with 5-fluorouracil.
    Ganzinelli M; Carrassa L; Crippa F; Tavecchio M; Broggini M; Damia G
    Clin Cancer Res; 2008 Aug; 14(16):5131-41. PubMed ID: 18698031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1.
    Zhao H; Piwnica-Worms H
    Mol Cell Biol; 2001 Jul; 21(13):4129-39. PubMed ID: 11390642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Chk1-Cdc25C regulation is involved in sensitizing A253 cells to a novel topoisomerase I inhibitor BNP1350 by bax gene transfer.
    Yin M; Hapke G; Guo B; Azrak RG; Frank C; Rustum YM
    Oncogene; 2001 Aug; 20(38):5249-57. PubMed ID: 11536038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serine-345 is required for Rad3-dependent phosphorylation and function of checkpoint kinase Chk1 in fission yeast.
    Lopez-Girona A; Tanaka K; Chen XB; Baber BA; McGowan CH; Russell P
    Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11289-94. PubMed ID: 11553781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a screening assay for surrogate markers of CHK1 inhibitor-induced cell cycle release.
    Fanton CP; Rowe MW; Moler EJ; Ison-Dugenny M; De Long SK; Rendahl K; Shao Y; Slabiak T; Gesner TG; MacKichan ML
    J Biomol Screen; 2006 Oct; 11(7):792-806. PubMed ID: 17035625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. p53 down-regulates CHK1 through p21 and the retinoblastoma protein.
    Gottifredi V; Karni-Schmidt O; Shieh SS; Prives C
    Mol Cell Biol; 2001 Feb; 21(4):1066-76. PubMed ID: 11158294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. p53-dependent Chk1 phosphorylation is required for maintenance of prolonged G2 Arrest.
    Wang XQ; Stanbridge EJ; Lao X; Cai Q; Fan ST; Redpath JL
    Radiat Res; 2007 Dec; 168(6):706-15. PubMed ID: 18088187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carcinogen-induced S-phase arrest is Chk1 mediated and caffeine sensitive.
    Guo N; Faller DV; Vaziri C
    Cell Growth Differ; 2002 Feb; 13(2):77-86. PubMed ID: 11864911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of Chk1-dependent G2 DNA damage checkpoint radiosensitizes p53 mutant human cells.
    Koniaras K; Cuddihy AR; Christopoulos H; Hogg A; O'Connell MJ
    Oncogene; 2001 Nov; 20(51):7453-63. PubMed ID: 11709716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Checkpoint kinase inhibitors: a review of the patent literature.
    Janetka JW; Ashwell S
    Expert Opin Ther Pat; 2009 Feb; 19(2):165-97. PubMed ID: 19441917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UCN-01 inhibits p53 up-regulation and abrogates gamma-radiation-induced G(2)-M checkpoint independently of p53 by targeting both of the checkpoint kinases, Chk2 and Chk1.
    Yu Q; La Rose J; Zhang H; Takemura H; Kohn KW; Pommier Y
    Cancer Res; 2002 Oct; 62(20):5743-8. PubMed ID: 12384533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of inhibitors of checkpoint kinase 1 through template screening.
    Matthews TP; Klair S; Burns S; Boxall K; Cherry M; Fisher M; Westwood IM; Walton MI; McHardy T; Cheung KM; Van Montfort R; Williams D; Aherne GW; Garrett MD; Reader J; Collins I
    J Med Chem; 2009 Aug; 52(15):4810-9. PubMed ID: 19572549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chk1-dependent S-M checkpoint delay in vertebrate cells is linked to maintenance of viable replication structures.
    Zachos G; Rainey MD; Gillespie DA
    Mol Cell Biol; 2005 Jan; 25(2):563-74. PubMed ID: 15632059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid PIKK-dependent release of Chk1 from chromatin promotes the DNA-damage checkpoint response.
    Smits VA; Reaper PM; Jackson SP
    Curr Biol; 2006 Jan; 16(2):150-9. PubMed ID: 16360315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of novel checkpoint kinase 1 inhibitors by in vitro assays and in human cancer cells treated with topoisomerase inhibitors.
    Ferry G; Studeny A; Bossard C; Kubara PM; Zeyer D; Renaud JP; Casara P; de Nanteuil G; Wierzbicki M; Pfeiffer B; Prudhomme M; Leonce S; Pierré A; Boutin JA; Golsteyn RM
    Life Sci; 2011 Aug; 89(7-8):259-68. PubMed ID: 21736880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cds1 or Chk1.
    Zeng Y; Forbes KC; Wu Z; Moreno S; Piwnica-Worms H; Enoch T
    Nature; 1998 Oct; 395(6701):507-10. PubMed ID: 9774107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug discovery targeting Chk1 and Chk2 kinases.
    Zhou BB; Sausville EA
    Prog Cell Cycle Res; 2003; 5():413-21. PubMed ID: 14593735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.