BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 17518268)

  • 1. ECTO-NOX target for the anticancer isoflavene phenoxodiol.
    Morré DJ; Chueh PJ; Yagiz K; Balicki A; Kim C; Morré DM
    Oncol Res; 2007; 16(7):299-312. PubMed ID: 17518268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monoclonal antibody to a cancer-specific and drug-responsive hydroquinone (NADH) oxidase from the sera of cancer patients.
    Cho N; Chueh PJ; Kim C; Caldwell S; Morré DM; Morré DJ
    Cancer Immunol Immunother; 2002 May; 51(3):121-9. PubMed ID: 11941450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic Analyses of Oscillations in ECTO-NOX-Catalyzed Oxidation of NADH.
    Morré DJ; Morré DM
    Nonlinearity Biol Toxicol Med; 2003 Jul; 1(3):345-62. PubMed ID: 19330139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Dextran-Phenoxodiol and Evaluation of Its Physical Stability and Biological Activity.
    Yee EMH; Cirillo G; Brandl MB; Black DS; Vittorio O; Kumar N
    Front Bioeng Biotechnol; 2019; 7():183. PubMed ID: 31440502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacology of ME-344, a novel cytotoxic isoflavone.
    Zhang L; Zhang J; Ye Z; Townsend DM; Tew KD
    Adv Cancer Res; 2019; 142():187-207. PubMed ID: 30885362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ENOX2 inhibition enhances infiltration of effector memory T-cell and mediates response to chemotherapy in immune-quiescent nasopharyngeal carcinoma.
    Kam NW; Laczka O; Li X; Wilkinson J; Hung D; Lai SPH; Wu KC; Tsao SW; Dai W; Che CM; Lee VH; Kwong DL
    J Adv Res; 2024 Feb; 56():69-86. PubMed ID: 37061217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of isoflavones in augmenting the effects of radiotherapy.
    Ivashkevich A
    Front Oncol; 2022; 12():800562. PubMed ID: 36936272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NOX66 as Monotherapy, and in Combination With Carboplatin, in Patients With Refractory Solid Tumors: Phase Ia/b Study.
    Kiknavelidze K; Shavdia M; Chikhladze N; Abshilava L; Messina M; Mautner G; Kelly G
    Curr Ther Res Clin Exp; 2021; 94():100631. PubMed ID: 34306271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triggering of eryptosis, the suicidal erythrocyte death, by phenoxodiol.
    Fink M; Bhuyan AAM; Nürnberg B; Faggio C; Lang F
    Naunyn Schmiedebergs Arch Pharmacol; 2019 Oct; 392(10):1311-1318. PubMed ID: 31280326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engagement with tNOX (ENOX2) to Inhibit SIRT1 and Activate p53-Dependent and -Independent Apoptotic Pathways by Novel 4,11-Diaminoanthra[2,3-
    Lin CY; Islam A; Su CJ; Tikhomirov AS; Shchekotikhin AE; Chuang SM; Chueh PJ; Chen YL
    Cancers (Basel); 2019 Mar; 11(3):. PubMed ID: 30909652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selected Office Based Anticancer Treatment Strategies.
    Stoff JA
    J Oncol; 2019; 2019():7462513. PubMed ID: 30766601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of tNOX expression through the ROS-p53-POU3F2 axis contributes to cellular responses against oxaliplatin in human colon cancer cells.
    Chen HY; Islam A; Yuan TM; Chen SW; Liu PF; Chueh PJ
    J Exp Clin Cancer Res; 2018 Jul; 37(1):161. PubMed ID: 30029680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of action of the third generation benzopyrans and evaluation of their broad anti-cancer activity in vitro and in vivo.
    Stevenson AJ; Ager EI; Proctor MA; Škalamera D; Heaton A; Brown D; Gabrielli BG
    Sci Rep; 2018 Mar; 8(1):5144. PubMed ID: 29572477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor-associated NADH oxidase (tNOX)-NAD+-sirtuin 1 axis contributes to oxaliplatin-induced apoptosis of gastric cancer cells.
    Chen HY; Cheng HL; Lee YH; Yuan TM; Chen SW; Lin YY; Chueh PJ
    Oncotarget; 2017 Feb; 8(9):15338-15348. PubMed ID: 28122359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Update on a tumor-associated NADH oxidase in gastric cancer cell growth.
    Cheng HL; Lee YH; Yuan TM; Chen SW; Chueh PJ
    World J Gastroenterol; 2016 Mar; 22(10):2900-5. PubMed ID: 26973386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-cancer analogues ME-143 and ME-344 exert toxicity by directly inhibiting mitochondrial NADH: ubiquinone oxidoreductase (Complex I).
    Lim SC; Carey KT; McKenzie M
    Am J Cancer Res; 2015; 5(2):689-701. PubMed ID: 25973307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ENOX2 target for the anticancer isoflavone ME-143.
    Morré DJ; Korty T; Meadows C; Ades LM; Morré DM
    Oncol Res; 2014; 22(1):1-12. PubMed ID: 25700353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A first-in-human dose-escalation study of ME-143, a second generation NADH oxidase inhibitor, in patients with advanced solid tumors.
    Pant S; Burris HA; Moore K; Bendell JC; Kurkjian C; Jones SF; Moreno O; Kuhn JG; McMeekin S; Infante JR
    Invest New Drugs; 2014 Feb; 32(1):87-93. PubMed ID: 23525756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor regression with a combination of drugs interfering with the tumor metabolism: efficacy of hydroxycitrate, lipoic acid and capsaicin.
    Schwartz L; Guais A; Israël M; Junod B; Steyaert JM; Crespi E; Baronzio G; Abolhassani M
    Invest New Drugs; 2013 Apr; 31(2):256-64. PubMed ID: 22797854
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.