These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 17518431)

  • 1. Using chemical genetics and ATP analogues to dissect protein kinase function.
    Elphick LM; Lee SE; Gouverneur V; Mann DJ
    ACS Chem Biol; 2007 May; 2(5):299-314. PubMed ID: 17518431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying specific kinase substrates through engineered kinases and ATP analogs.
    Kumar NV; Eblen ST; Weber MJ
    Methods; 2004 Apr; 32(4):389-97. PubMed ID: 15003601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the roles of protein kinases using chemical genetics.
    Elphick LM; Lee SE; Anderson AA; Child ES; Bonnac L; Gouverneur V; Mann DJ
    Future Med Chem; 2009 Oct; 1(7):1233-41. PubMed ID: 21426100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The logic and design of analog-sensitive kinases and their small molecule inhibitors.
    Lopez MS; Kliegman JI; Shokat KM
    Methods Enzymol; 2014; 548():189-213. PubMed ID: 25399647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies for the identification of kinase substrates using analog-sensitive kinases.
    Koch A; Hauf S
    Eur J Cell Biol; 2010; 89(2-3):184-93. PubMed ID: 20061049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational protocol to evaluate the effects of protein mutants in the kinase gatekeeper position on the binding of ATP substrate analogues.
    Romano V; de Beer TA; Schwede T
    BMC Res Notes; 2017 Feb; 10(1):104. PubMed ID: 28219448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitor scaffolds as new allele specific kinase substrates.
    Kraybill BC; Elkin LL; Blethrow JD; Morgan DO; Shokat KM
    J Am Chem Soc; 2002 Oct; 124(41):12118-28. PubMed ID: 12371851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering a "methionine clamp" into Src family kinases enhances specificity toward unnatural ATP analogues.
    Ulrich SM; Kenski DM; Shokat KM
    Biochemistry; 2003 Jul; 42(26):7915-21. PubMed ID: 12834343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic mechanisms and regulation of protein kinases.
    Wang Z; Cole PA
    Methods Enzymol; 2014; 548():1-21. PubMed ID: 25399640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Src family protein kinases with unnatural nucleotide specificity.
    Liu Y; Shah K; Yang F; Witucki L; Shokat KM
    Chem Biol; 1998 Feb; 5(2):91-101. PubMed ID: 9495830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of 5'-γ-ferrocenyl adenosine triphosphate (Fc-ATP) bioconjugates having poly(ethylene glycol) spacers in kinase-catalyzed phosphorylations.
    Martić S; Rains MK; Freeman D; Kraatz HB
    Bioconjug Chem; 2011 Aug; 22(8):1663-72. PubMed ID: 21696155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unexpected biotinylation using ATP-γ-Biotin-LC-PEO-amine as a kinase substrate.
    Arora DP; Boon EM
    Biochem Biophys Res Commun; 2013 Mar; 432(2):287-90. PubMed ID: 23399564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of ATP analogs for phosphorylation-dependent kinase-substrate crosslinking.
    Garre S; Senevirathne C; Pflum MK
    Bioorg Med Chem; 2014 Mar; 22(5):1620-5. PubMed ID: 24529309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP analog specificity of cAMP-dependent protein kinase, cGMP-dependent protein kinase, and phosphorylase kinase.
    Flockhart DA; Freist W; Hoppe J; Lincoln TM; Corbin JD
    Eur J Biochem; 1984 Apr; 140(2):289-95. PubMed ID: 6325182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A molecular gate which controls unnatural ATP analogue recognition by the tyrosine kinase v-Src.
    Liu Y; Shah K; Yang F; Witucki L; Shokat KM
    Bioorg Med Chem; 1998 Aug; 6(8):1219-26. PubMed ID: 9784863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate screening of protein kinases: detection methods and combinatorial peptide libraries.
    Kim M; Shin DS; Kim J; Lee YS
    Biopolymers; 2010; 94(6):753-62. PubMed ID: 20564046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploiting the unique ATP-binding pocket of toxoplasma calcium-dependent protein kinase 1 to identify its substrates.
    Lourido S; Jeschke GR; Turk BE; Sibley LD
    ACS Chem Biol; 2013; 8(6):1155-62. PubMed ID: 23530747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering the serine/threonine protein kinase Raf-1 to utilise an orthogonal analogue of ATP substituted at the N6 position.
    Hindley AD; Park S; Wang L; Shah K; Wang Y; Hu X; Shokat KM; Kolch W; Sedivy JM; Yeung KC
    FEBS Lett; 2004 Jan; 556(1-3):26-34. PubMed ID: 14706820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The generation of purinome-targeted libraries as a means to diversify ATP-mimetic chemical classes for lead finding.
    Felder ER; Badari A; Disingrini T; Mantegani S; Orrenius C; Avanzi N; Isacchi A; Salom B
    Mol Divers; 2012 Feb; 16(1):27-51. PubMed ID: 22350112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical genomic and proteomic methods for determining kinase inhibitor selectivity.
    Krishnamurty R; Maly DJ
    Comb Chem High Throughput Screen; 2007 Sep; 10(8):652-66. PubMed ID: 18045078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.