BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 17518569)

  • 1. Preconditioning of mesenchymal stem cells with low-intensity ultrasound for cartilage formation in vivo.
    Cui JH; Park SR; Park K; Choi BH; Min BH
    Tissue Eng; 2007 Feb; 13(2):351-60. PubMed ID: 17518569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound enhances transforming growth factor beta-mediated chondrocyte differentiation of human mesenchymal stem cells.
    Ebisawa K; Hata K; Okada K; Kimata K; Ueda M; Torii S; Watanabe H
    Tissue Eng; 2004; 10(5-6):921-9. PubMed ID: 15265310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of low-intensity ultrasound on chondrogenic differentiation of mesenchymal stem cells embedded in polyglycolic acid: an in vivo study.
    Cui JH; Park K; Park SR; Min BH
    Tissue Eng; 2006 Jan; 12(1):75-82. PubMed ID: 16499444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of dynamic and three-dimensional environments on chondrogenic differentiation of bone marrow stromal cells.
    Jung Y; Kim SH; Kim YH; Kim SH
    Biomed Mater; 2009 Oct; 4(5):055009. PubMed ID: 19779251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dependence of in vivo stable ectopic chondrogenesis by human mesenchymal stem cells on chondrogenic differentiation in vitro.
    Liu K; Zhou GD; Liu W; Zhang WJ; Cui L; Liu X; Liu TY; Cao Y
    Biomaterials; 2008 May; 29(14):2183-92. PubMed ID: 18289667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical stimulation by ultrasound enhances chondrogenic differentiation of mesenchymal stem cells in a fibrin-hyaluronic acid hydrogel.
    Choi JW; Choi BH; Park SH; Pai KS; Li TZ; Min BH; Park SR
    Artif Organs; 2013 Jul; 37(7):648-55. PubMed ID: 23495957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells induced by acellular cartilage sheets.
    Xue JX; Gong YY; Zhou GD; Liu W; Cao Y; Zhang WJ
    Biomaterials; 2012 Aug; 33(24):5832-40. PubMed ID: 22608213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The response of bone marrow-derived mesenchymal stem cells to dynamic compression following TGF-beta3 induced chondrogenic differentiation.
    Thorpe SD; Buckley CT; Vinardell T; O'Brien FJ; Campbell VA; Kelly DJ
    Ann Biomed Eng; 2010 Sep; 38(9):2896-909. PubMed ID: 20458627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesenchymal cells condensation-inducible mesh scaffolds for cartilage tissue engineering.
    Kim IG; Ko J; Lee HR; Do SH; Park K
    Biomaterials; 2016 Apr; 85():18-29. PubMed ID: 26854388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gelatin microspheres containing TGF-beta3 enhance the chondrogenesis of mesenchymal stem cells in modified pellet culture.
    Fan H; Zhang C; Li J; Bi L; Qin L; Wu H; Hu Y
    Biomacromolecules; 2008 Mar; 9(3):927-34. PubMed ID: 18269244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient exposure to transforming growth factor beta 3 improves the mechanical properties of mesenchymal stem cell-laden cartilage constructs in a density-dependent manner.
    Huang AH; Stein A; Tuan RS; Mauck RL
    Tissue Eng Part A; 2009 Nov; 15(11):3461-72. PubMed ID: 19432533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel.
    Williams CG; Kim TK; Taboas A; Malik A; Manson P; Elisseeff J
    Tissue Eng; 2003 Aug; 9(4):679-88. PubMed ID: 13678446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells.
    Huang CY; Hagar KL; Frost LE; Sun Y; Cheung HS
    Stem Cells; 2004; 22(3):313-23. PubMed ID: 15153608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro engineered cartilage using synovium-derived mesenchymal stem cells with injectable gellan hydrogels.
    Fan J; Gong Y; Ren L; Varshney RR; Cai D; Wang DA
    Acta Biomater; 2010 Mar; 6(3):1178-85. PubMed ID: 19733701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chondrogenesis of rabbit mesenchymal stem cells in fibrin/hyaluronan composite scaffold in vitro.
    Park SH; Choi BH; Park SR; Min BH
    Tissue Eng Part A; 2011 May; 17(9-10):1277-86. PubMed ID: 21189070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Potential of chondrogenesis of bone marrow stromal cells co-cultured with chondrocytes on biodegradable scaffold: in vivo experiment with pigs and mice].
    Liu X; Zhou GD; Lü XJ; Liu TY; Zhang WJ; Liu W; Cao YL
    Zhonghua Yi Xue Za Zhi; 2007 Jul; 87(27):1929-33. PubMed ID: 17923021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repairing cartilage defects with bone marrow mesenchymal stem cells induced by CDMP and TGF-β1.
    Wu G; Cui Y; Ma L; Pan X; Wang X; Zhang B
    Cell Tissue Bank; 2014 Mar; 15(1):51-7. PubMed ID: 23460257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis.
    Bosnakovski D; Mizuno M; Kim G; Takagi S; Okumura M; Fujinaga T
    Biotechnol Bioeng; 2006 Apr; 93(6):1152-63. PubMed ID: 16470881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesenchymal stem cells with IGF-1 and TGF- β1 in laminin gel for osteochondral defects in rabbits.
    Gugjoo MB; Amarpal ; Abdelbaset-Ismail A; Aithal HP; Kinjavdekar P; Pawde AM; Kumar GS; Sharma GT
    Biomed Pharmacother; 2017 Sep; 93():1165-1174. PubMed ID: 28738525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of implantable cartilaginous structures from bone marrow-derived mesenchymal stem cells.
    Hannouche D; Terai H; Fuchs JR; Terada S; Zand S; Nasseri BA; Petite H; Sedel L; Vacanti JP
    Tissue Eng; 2007 Jan; 13(1):87-99. PubMed ID: 17518583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.