BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 17518590)

  • 1. Formation of biphasic constructs containing cartilage with a calcified zone interface.
    Allan KS; Pilliar RM; Wang J; Grynpas MD; Kandel RA
    Tissue Eng; 2007 Jan; 13(1):167-77. PubMed ID: 17518590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The incorporation of a zone of calcified cartilage improves the interfacial shear strength between in vitro-formed cartilage and the underlying substrate.
    St-Pierre JP; Gan L; Wang J; Pilliar RM; Grynpas MD; Kandel RA
    Acta Biomater; 2012 Apr; 8(4):1603-15. PubMed ID: 22222151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sol gel-derived hydroxyapatite films over porous calcium polyphosphate substrates for improved tissue engineering of osteochondral-like constructs.
    Lee WD; Gawri R; Pilliar RM; Stanford WL; Kandel RA
    Acta Biomater; 2017 Oct; 62():352-361. PubMed ID: 28818689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of hyaline cartilage with a calcified zone using bone marrow stromal cells.
    Lee WD; Hurtig MB; Pilliar RM; Stanford WL; Kandel RA
    Osteoarthritis Cartilage; 2015 Aug; 23(8):1307-15. PubMed ID: 25891750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of a nucleus pulposus-cartilage endplate construct in vitro.
    Hamilton DJ; Séguin CA; Wang J; Pilliar RM; Kandel RA;
    Biomaterials; 2006 Jan; 27(3):397-405. PubMed ID: 16139883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the mineral in calcified articular cartilagenous tissue formed in vitro.
    Kandel R; Hurtig M; Grynpas M
    Tissue Eng; 1999 Feb; 5(1):25-34. PubMed ID: 10207187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcification of cartilage formed in vitro on calcium polyphosphate bone substitutes is regulated by inorganic polyphosphate.
    St-Pierre JP; Pilliar RM; Grynpas MD; Kandel RA
    Acta Biomater; 2010 Aug; 6(8):3302-9. PubMed ID: 20188870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repair of porcine articular cartilage defect with a biphasic osteochondral composite.
    Jiang CC; Chiang H; Liao CJ; Lin YJ; Kuo TF; Shieh CS; Huang YY; Tuan RS
    J Orthop Res; 2007 Oct; 25(10):1277-90. PubMed ID: 17576624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. StarPEG/heparin-hydrogel based in vivo engineering of stable bizonal cartilage with a calcified bottom layer.
    Kunisch E; Knauf AK; Hesse E; Freudenberg U; Werner C; Bothe F; Diederichs S; Richter W
    Biofabrication; 2018 Oct; 11(1):015001. PubMed ID: 30376451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of specific chondrocyte populations to modulate the properties of tissue-engineered cartilage.
    Waldman SD; Grynpas MD; Pilliar RM; Kandel RA
    J Orthop Res; 2003 Jan; 21(1):132-8. PubMed ID: 12507590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of a biphasic graft constructed with chondrocytes overlying a beta-tricalcium phosphate block in the treatment of rabbit osteochondral defects.
    Tanaka T; Komaki H; Chazono M; Fujii K
    Tissue Eng; 2005; 11(1-2):331-9. PubMed ID: 15738686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term intermittent shear deformation improves the quality of cartilaginous tissue formed in vitro.
    Waldman SD; Spiteri CG; Grynpas MD; Pilliar RM; Kandel RA
    J Orthop Res; 2003 Jul; 21(4):590-6. PubMed ID: 12798056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep zone articular chondrocytes in vitro express genes that show specific changes with mineralization.
    Sun Y; Kandel R
    J Bone Miner Res; 1999 Nov; 14(11):1916-25. PubMed ID: 10571692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supplementation with platelet-rich plasma improves the in vitro formation of tissue-engineered cartilage with enhanced mechanical properties.
    Petrera M; De Croos JN; Iu J; Hurtig M; Kandel RA; Theodoropoulos JS
    Arthroscopy; 2013 Oct; 29(10):1685-92. PubMed ID: 24075614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane culture of bone marrow stromal cells yields better tissue than pellet culture for engineering cartilage-bone substitute biphasic constructs in a two-step process.
    Lee WD; Hurtig MB; Kandel RA; Stanford WL
    Tissue Eng Part C Methods; 2011 Sep; 17(9):939-48. PubMed ID: 21563981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of cartilagenous tissue formed on calcium polyphosphate substrates in vitro.
    Waldman SD; Grynpas MD; Pilliar RM; Kandel RA
    J Biomed Mater Res; 2002 Dec; 62(3):323-30. PubMed ID: 12209917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteochondral defect repair using a novel tissue engineering approach: sheep model study.
    Pilliar RM; Kandel RA; Grynpas MD; Zalzal P; Hurtig M
    Technol Health Care; 2007; 15(1):47-56. PubMed ID: 17264412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study on shape and structure of calcified cartilage zone in normal human knee joint].
    Wang F; Yang L; Duan X; Tan H; Dai G
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 May; 22(5):524-7. PubMed ID: 18630427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Migratory Cells From Bioengineered Bovine Cartilage in a 3D Co-culture Model.
    Wu MJM; Sermer C; Kandel RA; Theodoropoulos JS
    Am J Sports Med; 2022 Sep; 50(11):3090-3101. PubMed ID: 35983988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage.
    Waldman SD; Spiteri CG; Grynpas MD; Pilliar RM; Kandel RA
    Tissue Eng; 2004; 10(9-10):1323-31. PubMed ID: 15588393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.