BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 17518630)

  • 41. Vascular smooth muscle cells as a valvular interstitial cell surrogate in heart valve tissue engineering.
    Appleton AJ; Appleton CT; Boughner DR; Rogers KA
    Tissue Eng Part A; 2009 Dec; 15(12):3889-97. PubMed ID: 19563261
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP).
    Wu PK; Ringeisen BR
    Biofabrication; 2010 Mar; 2(1):014111. PubMed ID: 20811126
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Endothelial cell activation of the smooth muscle cell phosphoinositide 3-kinase/Akt pathway promotes differentiation.
    Brown DJ; Rzucidlo EM; Merenick BL; Wagner RJ; Martin KA; Powell RJ
    J Vasc Surg; 2005 Mar; 41(3):509-16. PubMed ID: 15838487
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A modular tissue engineering construct containing smooth muscle cells and endothelial cells.
    Leung BM; Sefton MV
    Ann Biomed Eng; 2007 Dec; 35(12):2039-49. PubMed ID: 17882548
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Behavior of human mesenchymal stem cells in fibrin-based vascular tissue engineering constructs.
    O'Cearbhaill ED; Murphy M; Barry F; McHugh PE; Barron V
    Ann Biomed Eng; 2010 Mar; 38(3):649-57. PubMed ID: 20077010
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cell electrospinning highly concentrated cellular suspensions containing primary living organisms into cell-bearing threads and scaffolds.
    Jayasinghe SN; Irvine S; McEwan JR
    Nanomedicine (Lond); 2007 Aug; 2(4):555-67. PubMed ID: 17716138
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interleukin-10 controls the protective effects of circulating microparticles from patients with septic shock on tissue-engineered vascular media.
    Mostefai HA; Bourget JM; Meziani F; Martinez MC; Leonetti D; Mercat A; Asfar P; Germain L; Andriantsitohaina R
    Clin Sci (Lond); 2013 Jul; 125(2):77-85. PubMed ID: 23379624
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of cyclic stretch on proliferation of mesenchymal stem cells and their differentiation to smooth muscle cells.
    Ghazanfari S; Tafazzoli-Shadpour M; Shokrgozar MA
    Biochem Biophys Res Commun; 2009 Oct; 388(3):601-5. PubMed ID: 19695226
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Age effects on vascular smooth muscle: an engineered tissue approach.
    Solan A; Niklason L
    Cell Transplant; 2005; 14(7):481-8. PubMed ID: 16285256
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.
    Hsiao AY; Okitsu T; Onoe H; Kiyosawa M; Teramae H; Iwanaga S; Kazama T; Matsumoto T; Takeuchi S
    PLoS One; 2015; 10(3):e0119010. PubMed ID: 25734774
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Time-dependent modulation of alignment and differentiation of smooth muscle cells seeded on a porous substrate undergoing cyclic mechanical strain.
    Cha JM; Park SN; Noh SH; Suh H
    Artif Organs; 2006 Apr; 30(4):250-8. PubMed ID: 16643383
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Engineered small diameter vascular grafts by combining cell sheet engineering and electrospinning technology.
    Ahn H; Ju YM; Takahashi H; Williams DF; Yoo JJ; Lee SJ; Okano T; Atala A
    Acta Biomater; 2015 Apr; 16():14-22. PubMed ID: 25641646
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering.
    Xu C; Inai R; Kotaki M; Ramakrishna S
    Tissue Eng; 2004; 10(7-8):1160-8. PubMed ID: 15363172
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Vascular smooth muscle cells on hyaluronic acid: culture and mechanical characterization of an engineered vascular construct.
    Remuzzi A; Mantero S; Colombo M; Morigi M; Binda E; Camozzi D; Imberti B
    Tissue Eng; 2004; 10(5-6):699-710. PubMed ID: 15265287
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Experimental models that mimic the differentiation and dedifferentiation of vascular cells.
    Pauly RR; Passaniti A; Crow M; Kinsella JL; Papadopoulos N; Monticone R; Lakatta EG; Martin GR
    Circulation; 1992 Dec; 86(6 Suppl):III68-73. PubMed ID: 1330366
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Freeze-thaw induced biomechanical changes in arteries: role of collagen matrix and smooth muscle cells.
    Venkatasubramanian RT; Wolkers WF; Shenoi MM; Barocas VH; Lafontaine D; Soule CL; Iaizzo PA; Bischof JC
    Ann Biomed Eng; 2010 Mar; 38(3):694-706. PubMed ID: 20108044
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Extracellular matrix glycoprotein biglycan enhances vascular smooth muscle cell proliferation and migration.
    Shimizu-Hirota R; Sasamura H; Kuroda M; Kobayashi E; Hayashi M; Saruta T
    Circ Res; 2004 Apr; 94(8):1067-74. PubMed ID: 15031262
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Perfusion bioreactor for small diameter tissue-engineered arteries.
    Williams C; Wick TM
    Tissue Eng; 2004; 10(5-6):930-41. PubMed ID: 15265311
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modulation of vascular smooth muscle cells proteoglycan synthesis by the extracellular matrix.
    Figueroa JE; Oubre J; Vijayagopal P
    J Cell Physiol; 2004 Feb; 198(2):302-9. PubMed ID: 14603532
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors.
    Jeong SI; Kim SY; Cho SK; Chong MS; Kim KS; Kim H; Lee SB; Lee YM
    Biomaterials; 2007 Feb; 28(6):1115-22. PubMed ID: 17112581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.