These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 17518638)

  • 1. Magnetically-guided self-assembly of fibrin matrices with ordered nano-scale structure for tissue engineering.
    Alsberg E; Feinstein E; Joy MP; Prentiss M; Ingber DE
    Tissue Eng; 2006 Nov; 12(11):3247-56. PubMed ID: 17518638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular properties of fibrin-based matrices for promotion of angiogenesis in vitro.
    Hall H; Baechi T; Hubbell JA
    Microvasc Res; 2001 Nov; 62(3):315-26. PubMed ID: 11678634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vascular tissue generation in response to signaling molecules integrated with a novel poly(epsilon-caprolactone)-fibrin hybrid scaffold.
    Pankajakshan D; Krishnan V K; Krishnan LK
    J Tissue Eng Regen Med; 2007; 1(5):389-97. PubMed ID: 18038433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vascular endothelial cells on two-and three-dimensional fibrin assemblies for biomaterial coatings.
    Filová E; Brynda E; Riedel T; Bacáková L; Chlupác J; Lisá V; Houska M; Dyr JE
    J Biomed Mater Res A; 2009 Jul; 90(1):55-69. PubMed ID: 18481789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell culture in autologous fibrin scaffolds for applications in tissue engineering.
    de la Puente P; Ludeña D
    Exp Cell Res; 2014 Mar; 322(1):1-11. PubMed ID: 24378385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of passage number and matrix characteristics on differentiation of endothelial cells cultured for tissue engineering.
    Prasad Chennazhy K; Krishnan LK
    Biomaterials; 2005 Oct; 26(28):5658-67. PubMed ID: 15878371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of fibrin scaffolds with controlled microscale architecture by a two-photon polymerization-micromolding technique.
    Koroleva A; Gittard S; Schlie S; Deiwick A; Jockenhoevel S; Chichkov B
    Biofabrication; 2012 Mar; 4(1):015001. PubMed ID: 22257958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of fibrin and fibrin composites for bone tissue engineering.
    Noori A; Ashrafi SJ; Vaez-Ghaemi R; Hatamian-Zaremi A; Webster TJ
    Int J Nanomedicine; 2017; 12():4937-4961. PubMed ID: 28761338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The configuration of fibrin clots determines capillary morphogenesis and endothelial cell migration.
    Nehls V; Herrmann R
    Microvasc Res; 1996 May; 51(3):347-64. PubMed ID: 8992233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fibrin: a versatile scaffold for tissue engineering applications.
    Ahmed TA; Dare EV; Hincke M
    Tissue Eng Part B Rev; 2008 Jun; 14(2):199-215. PubMed ID: 18544016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibrin: a natural biodegradable scaffold in vascular tissue engineering.
    Shaikh FM; Callanan A; Kavanagh EG; Burke PE; Grace PA; McGloughlin TM
    Cells Tissues Organs; 2008; 188(4):333-46. PubMed ID: 18552484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusion limits of an in vitro thick prevascularized tissue.
    Griffith CK; Miller C; Sainson RC; Calvert JW; Jeon NL; Hughes CC; George SC
    Tissue Eng; 2005; 11(1-2):257-66. PubMed ID: 15738680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrete crosslinked fibrin microthread scaffolds for tissue regeneration.
    Cornwell KG; Pins GD
    J Biomed Mater Res A; 2007 Jul; 82(1):104-12. PubMed ID: 17269139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Application of electrostatic spinning technology in nano-structured polymer scaffold].
    Chen D; Li M; Fang Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Apr; 21(4):411-5. PubMed ID: 17546890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel method for the fabrication of fibrin-based electrospun nanofibrous scaffold for tissue-engineering applications.
    Perumcherry SR; Chennazhi KP; Nair SV; Menon D; Afeesh R
    Tissue Eng Part C Methods; 2011 Nov; 17(11):1121-30. PubMed ID: 21902615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell Orientation.
    Ma Z; He W; Yong T; Ramakrishna S
    Tissue Eng; 2005; 11(7-8):1149-58. PubMed ID: 16144451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibrin-filled scaffolds for bone-tissue engineering: An in vivo study.
    Karp JM; Sarraf F; Shoichet MS; Davies JE
    J Biomed Mater Res A; 2004 Oct; 71(1):162-71. PubMed ID: 15368266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fibrinogen-based precision microporous scaffold for tissue engineering.
    Linnes MP; Ratner BD; Giachelli CM
    Biomaterials; 2007 Dec; 28(35):5298-306. PubMed ID: 17765302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S; Lee GY; Wong JY; Desai TA
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine-tuning of a three-dimensional microcarrier-based angiogenesis assay for the analysis of endothelial-mesenchymal cell co-cultures in fibrin and collagen gels.
    Dietrich F; Lelkes PI
    Angiogenesis; 2006; 9(3):111-25. PubMed ID: 17051343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.