These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 17519130)

  • 1. Circulating angiotensin II and dietary salt: converging signals for neurogenic hypertension.
    Osborn JW; Fink GD; Sved AF; Toney GM; Raizada MK
    Curr Hypertens Rep; 2007 Jun; 9(3):228-35. PubMed ID: 17519130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the subfornical organ in angiotensin II-salt hypertension in the rat.
    Osborn JW; Hendel MD; Collister JP; Ariza-Guzman PA; Fink GD
    Exp Physiol; 2012 Jan; 97(1):80-8. PubMed ID: 21967900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Angiotensin II-Induced Hypertension Is Attenuated by Overexpressing Copper/Zinc Superoxide Dismutase in the Brain Organum Vasculosum of the Lamina Terminalis.
    Collister JP; Taylor-Smith H; Drebes D; Nahey D; Tian J; Zimmerman MC
    Oxid Med Cell Longev; 2016; 2016():3959087. PubMed ID: 26881025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain sodium sensing for regulation of thirst, salt appetite, and blood pressure.
    Hiyama TY
    Physiol Rep; 2024 Mar; 12(5):e15970. PubMed ID: 38479999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compromised blood-brain barrier permeability: novel mechanism by which circulating angiotensin II signals to sympathoexcitatory centres during hypertension.
    Biancardi VC; Stern JE
    J Physiol; 2016 Mar; 594(6):1591-600. PubMed ID: 26580484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Splanchnic circulation is a critical neural target in angiotensin II salt hypertension in rats.
    King AJ; Osborn JW; Fink GD
    Hypertension; 2007 Sep; 50(3):547-56. PubMed ID: 17646575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The damaging duo: Obesity and excess dietary salt contribute to hypertension and cardiovascular disease.
    Watso JC; Fancher IS; Gomez DH; Hutchison ZJ; Gutiérrez OM; Robinson AT
    Obes Rev; 2023 Aug; 24(8):e13589. PubMed ID: 37336641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopamine Receptor D
    Zeng C; Armando I; Yang J; Jose PA
    Yale J Biol Med; 2023 Mar; 96(1):95-105. PubMed ID: 37009199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurogenic Hypertension, the Blood-Brain Barrier, and the Potential Role of Targeted Nanotherapeutics.
    Lamptey RNL; Sun C; Layek B; Singh J
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurons of the median preoptic nucleus contribute to chronic angiotensin II-salt induced hypertension in the rat.
    Collister JP; Ployngam T; Ariza-Guzman PA; Osborn JW
    Physiol Rep; 2022 Dec; 10(24):e15551. PubMed ID: 36564179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microglia-Mediated Neuroinflammation: A Potential Target for the Treatment of Cardiovascular Diseases.
    Wang M; Pan W; Xu Y; Zhang J; Wan J; Jiang H
    J Inflamm Res; 2022; 15():3083-3094. PubMed ID: 35642214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angiotensin II inhibits the A-type K
    Roy RK; Ferreira-Neto HC; Felder RB; Stern JE
    Am J Physiol Regul Integr Comp Physiol; 2022 Jun; 322(6):R526-R534. PubMed ID: 35319903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PLIN2 Mediates Neuroinflammation and Oxidative/Nitrosative Stress via Downregulating Phosphatidylethanolamine in the Rostral Ventrolateral Medulla of Stressed Hypertensive Rats.
    Zhang S; Hu L; Han C; Huang R; Ooi K; Qian X; Ren X; Chu D; Zhang H; Du D; Xia C
    J Inflamm Res; 2021; 14():6331-6348. PubMed ID: 34880641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UCP3 (Uncoupling Protein 3) Insufficiency Exacerbates Left Ventricular Diastolic Dysfunction During Angiotensin II-Induced Hypertension.
    Chen X; Ashraf S; Ashraf N; Harmancey R
    J Am Heart Assoc; 2021 Sep; 10(18):e022556. PubMed ID: 34533037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the central renin‑angiotensin system in hypertension (Review).
    Su C; Xue J; Ye C; Chen A
    Int J Mol Med; 2021 Jun; 47(6):. PubMed ID: 33846799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High dietary salt amplifies osmoresponsiveness in vasopressin-releasing neurons.
    Levi DI; Wyrosdic JC; Hicks AI; Andrade MA; Toney GM; Prager-Khoutorsky M; Bourque CW
    Cell Rep; 2021 Mar; 34(11):108866. PubMed ID: 33730577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NO-induced vasodilation correlates directly with BP in smooth muscle-Na/Ca exchanger-1-engineered mice: elevated BP does not attenuate endothelial function.
    Wang Y; Zhang J; Wier WG; Chen L; Blaustein MP
    Am J Physiol Heart Circ Physiol; 2021 Jan; 320(1):H221-H237. PubMed ID: 33124883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excessive dietary salt promotes aortic stiffness in murine renovascular hypertension.
    DeLalio LJ; Hahn S; Katayama PL; Wenner MM; Farquhar WB; Straub AC; Stocker SD
    Am J Physiol Heart Circ Physiol; 2020 May; 318(5):H1346-H1355. PubMed ID: 32302491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is the Brain an Early or Late Component of Essential Hypertension?
    Jennings JR; Muldoon MF; Sved AF
    Am J Hypertens; 2020 May; 33(6):482-490. PubMed ID: 32170317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcimimetic R568 reduced the blood pressure and improved aortic remodeling in spontaneously hypertensive rats by inhibiting local renin-angiotensin system activity.
    Sun R; Zhang W; Zhong H; Wang L; Tang N; Liu Y; Zhao Y; Zhang T; He F
    Exp Ther Med; 2018 Nov; 16(5):4089-4099. PubMed ID: 30402152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.