These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

622 related articles for article (PubMed ID: 17519223)

  • 21. Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease.
    Hermel E; Gafni J; Propp SS; Leavitt BR; Wellington CL; Young JE; Hackam AS; Logvinova AV; Peel AL; Chen SF; Hook V; Singaraja R; Krajewski S; Goldsmith PC; Ellerby HM; Hayden MR; Bredesen DE; Ellerby LM
    Cell Death Differ; 2004 Apr; 11(4):424-38. PubMed ID: 14713958
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Striatal neurons expressing full-length mutant huntingtin exhibit decreased N-cadherin and altered neuritogenesis.
    Reis SA; Thompson MN; Lee JM; Fossale E; Kim HH; Liao JK; Moskowitz MA; Shaw SY; Dong L; Haggarty SJ; MacDonald ME; Seong IS
    Hum Mol Genet; 2011 Jun; 20(12):2344-55. PubMed ID: 21447599
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transgenic mice expressing mutated full-length HD cDNA: a paradigm for locomotor changes and selective neuronal loss in Huntington's disease.
    Reddy PH; Charles V; Williams M; Miller G; Whetsell WO; Tagle DA
    Philos Trans R Soc Lond B Biol Sci; 1999 Jun; 354(1386):1035-45. PubMed ID: 10434303
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutant huntingtin expression in clonal striatal cells: dissociation of inclusion formation and neuronal survival by caspase inhibition.
    Kim M; Lee HS; LaForet G; McIntyre C; Martin EJ; Chang P; Kim TW; Williams M; Reddy PH; Tagle D; Boyce FM; Won L; Heller A; Aronin N; DiFiglia M
    J Neurosci; 1999 Feb; 19(3):964-73. PubMed ID: 9920660
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Progressive phenotype and nuclear accumulation of an amino-terminal cleavage fragment in a transgenic mouse model with inducible expression of full-length mutant huntingtin.
    Tanaka Y; Igarashi S; Nakamura M; Gafni J; Torcassi C; Schilling G; Crippen D; Wood JD; Sawa A; Jenkins NA; Copeland NG; Borchelt DR; Ross CA; Ellerby LM
    Neurobiol Dis; 2006 Feb; 21(2):381-91. PubMed ID: 16150600
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice.
    Li H; Li SH; Yu ZX; Shelbourne P; Li XJ
    J Neurosci; 2001 Nov; 21(21):8473-81. PubMed ID: 11606636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intrastriatal rAAV-mediated delivery of anti-huntingtin shRNAs induces partial reversal of disease progression in R6/1 Huntington's disease transgenic mice.
    Rodriguez-Lebron E; Denovan-Wright EM; Nash K; Lewin AS; Mandel RJ
    Mol Ther; 2005 Oct; 12(4):618-33. PubMed ID: 16019264
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional roles for the striatal-enriched transcription factor, Bcl11b, in the control of striatal gene expression and transcriptional dysregulation in Huntington's disease.
    Desplats PA; Lambert JR; Thomas EA
    Neurobiol Dis; 2008 Sep; 31(3):298-308. PubMed ID: 18595722
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Formation of polyglutamine inclusions in a wide range of non-CNS tissues in the HdhQ150 knock-in mouse model of Huntington's disease.
    Moffitt H; McPhail GD; Woodman B; Hobbs C; Bates GP
    PLoS One; 2009 Nov; 4(11):e8025. PubMed ID: 19956633
    [TBL] [Abstract][Full Text] [Related]  

  • 30. BDNF overexpression in the forebrain rescues Huntington's disease phenotypes in YAC128 mice.
    Xie Y; Hayden MR; Xu B
    J Neurosci; 2010 Nov; 30(44):14708-18. PubMed ID: 21048129
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Light and electron microscopic characterization of the evolution of cellular pathology in the Hdh(CAG)150 Huntington's disease knock-in mouse.
    Bayram-Weston Z; Torres EM; Jones L; Dunnett SB; Brooks SP
    Brain Res Bull; 2012 Jun; 88(2-3):189-98. PubMed ID: 21511013
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regional vulnerability in Huntington's disease: fMRI-guided molecular analysis in patients and a mouse model of disease.
    Lewandowski NM; Bordelon Y; Brickman AM; Angulo S; Khan U; Muraskin J; Griffith EY; Wasserman P; Menalled L; Vonsattel JP; Marder K; Small SA; Moreno H
    Neurobiol Dis; 2013 Apr; 52():84-93. PubMed ID: 23220414
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wild type Huntingtin reduces the cellular toxicity of mutant Huntingtin in mammalian cell models of Huntington's disease.
    Ho LW; Brown R; Maxwell M; Wyttenbach A; Rubinsztein DC
    J Med Genet; 2001 Jul; 38(7):450-2. PubMed ID: 11432963
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cholesterol biosynthesis pathway is disturbed in YAC128 mice and is modulated by huntingtin mutation.
    Valenza M; Carroll JB; Leoni V; Bertram LN; Björkhem I; Singaraja RR; Di Donato S; Lutjohann D; Hayden MR; Cattaneo E
    Hum Mol Genet; 2007 Sep; 16(18):2187-98. PubMed ID: 17613541
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington's disease brains, associate with membranes, and undergo calpain-dependent proteolysis.
    Kim YJ; Yi Y; Sapp E; Wang Y; Cuiffo B; Kegel KB; Qin ZH; Aronin N; DiFiglia M
    Proc Natl Acad Sci U S A; 2001 Oct; 98(22):12784-9. PubMed ID: 11675509
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glutathione redox cycle dysregulation in Huntington's disease knock-in striatal cells.
    Ribeiro M; Rosenstock TR; Cunha-Oliveira T; Ferreira IL; Oliveira CR; Rego AC
    Free Radic Biol Med; 2012 Nov; 53(10):1857-67. PubMed ID: 22982598
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Compensatory changes in the ubiquitin-proteasome system, brain-derived neurotrophic factor and mitochondrial complex II/III in YAC72 and R6/2 transgenic mice partially model Huntington's disease patients.
    Seo H; Kim W; Isacson O
    Hum Mol Genet; 2008 Oct; 17(20):3144-53. PubMed ID: 18640989
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease.
    Dunah AW; Jeong H; Griffin A; Kim YM; Standaert DG; Hersch SM; Mouradian MM; Young AB; Tanese N; Krainc D
    Science; 2002 Jun; 296(5576):2238-43. PubMed ID: 11988536
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mass Spectrometry Analysis of Wild-Type and Knock-in Q140/Q140 Huntington's Disease Mouse Brains Reveals Changes in Glycerophospholipids Including Alterations in Phosphatidic Acid and Lyso-Phosphatidic Acid.
    Vodicka P; Mo S; Tousley A; Green KM; Sapp E; Iuliano M; Sadri-Vakili G; Shaffer SA; Aronin N; DiFiglia M; Kegel-Gleason KB
    J Huntingtons Dis; 2015; 4(2):187-201. PubMed ID: 26397899
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neuronal targets for reducing mutant huntingtin expression to ameliorate disease in a mouse model of Huntington's disease.
    Wang N; Gray M; Lu XH; Cantle JP; Holley SM; Greiner E; Gu X; Shirasaki D; Cepeda C; Li Y; Dong H; Levine MS; Yang XW
    Nat Med; 2014 May; 20(5):536-41. PubMed ID: 24784230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.