These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 17519524)

  • 1. Effects of partial ablation of the cerebellum on sustained swimming in goldfish.
    Matsumoto N; Yoshida M; Uematsu K
    Brain Behav Evol; 2007; 70(2):105-14. PubMed ID: 17519524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of caudal fin loss and regeneration on the swimming performance of three cyprinid fish species with different swimming capacities.
    Fu C; Cao ZD; Fu SJ
    J Exp Biol; 2013 Aug; 216(Pt 16):3164-74. PubMed ID: 23661776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of caudal fin amputation on metabolic interaction between digestion and locomotion in juveniles of three cyprinid fish species with different metabolic modes.
    Fu C; Cao ZD; Fu SJ
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Mar; 164(3):456-65. PubMed ID: 23269108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional participation of the valvula cerebelli on the goldfish dorsal light response.
    Yanagihara D; Watanabe S; Takagi S
    Physiologist; 1993 Feb; 36(1 Suppl):S83-4. PubMed ID: 11538539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of the cerebellum in classical fear conditioning in goldfish.
    Yoshida M; Okamura I; Uematsu K
    Behav Brain Res; 2004 Aug; 153(1):143-8. PubMed ID: 15219715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of telencephalic ablation on shoaling behavior in goldfish.
    Shinozuka K; Watanabe S
    Physiol Behav; 2004 Mar; 81(1):141-8. PubMed ID: 15059693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of cerebellar lesions on the swimming performance of the trout.
    Roberts BL; van Rossem A; de Jager S
    J Exp Biol; 1992 Jun; 167():171-8. PubMed ID: 1634862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow patterns of larval fish: undulatory swimming in the intermediate flow regime.
    Müller UK; van den Boogaart JG; van Leeuwen JL
    J Exp Biol; 2008 Jan; 211(Pt 2):196-205. PubMed ID: 18165247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Swimming in four goldfish Carassius auratus morphotypes: understanding functional design and performance employing artificially selected forms.
    Blake RW; Li J; Chan KH
    J Fish Biol; 2009 Aug; 75(3):591-617. PubMed ID: 20738559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fictive swimming elicited by electrical stimulation of the midbrain in goldfish.
    Fetcho JR; Svoboda KR
    J Neurophysiol; 1993 Aug; 70(2):765-80. PubMed ID: 8410171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal swim speeds for traversing velocity barriers: an analysis of volitional high-speed swimming behavior of migratory fishes.
    Castro-Santos T
    J Exp Biol; 2005 Feb; 208(Pt 3):421-32. PubMed ID: 15671330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of temperature on metabolic interaction between digestion and locomotion in juveniles of three cyprinid fish (Carassius auratus, Cyprinus carpio and Spinibarbus sinensis).
    Pang X; Cao ZD; Fu SJ
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Jul; 159(3):253-60. PubMed ID: 21440661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of acclimation to hypoxia and sustained exercise on subsequent hypoxia tolerance and swimming performance in goldfish (Carassius auratus).
    Fu SJ; Brauner CJ; Cao ZD; Richards JG; Peng JL; Dhillon R; Wang YX
    J Exp Biol; 2011 Jun; 214(Pt 12):2080-8. PubMed ID: 21613525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interactive effects of exercise and gill remodeling in goldfish (Carassius auratus).
    Perry SF; Fletcher C; Bailey S; Ting J; Bradshaw J; Tzaneva V; Gilmour KM
    J Comp Physiol B; 2012 Oct; 182(7):935-45. PubMed ID: 22588580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pectoral fin coordination and gait transitions in steadily swimming juvenile reef fishes.
    Hale ME; Day RD; Thorsen DH; Westneat MW
    J Exp Biol; 2006 Oct; 209(Pt 19):3708-18. PubMed ID: 16985188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebellum and spatial cognition in goldfish.
    Durán E; Ocaña FM; Martín-Monzón I; Rodríguez F; Salas C
    Behav Brain Res; 2014 Feb; 259():1-8. PubMed ID: 24184084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boxfishes as unusually well-controlled autonomous underwater vehicles.
    Gordon MS; Hove JR; Webb PW; Weihs D
    Physiol Biochem Zool; 2000; 73(6):663-71. PubMed ID: 11121341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of training on the swimming muscles of the goldfish (Carassius auratus).
    Davison W; Goldspink G
    J Exp Biol; 1978 Jun; 74():115-22. PubMed ID: 670869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lateral line nerve fibers do not code bulk water flow direction in turbulent flow.
    Chagnaud BP; Bleckmann H; Hofmann MH
    Zoology (Jena); 2008; 111(3):204-17. PubMed ID: 18329260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Correlation of the sizes of Mauthner neurons with the preference in the goldfish to turn rightwards or leftwards].
    Mikhaĭlova GZ; Pavlik VD; Tiras NP; Moshkov DA
    Morfologiia; 2005; 127(2):16-9. PubMed ID: 16201325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.