These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 17520276)

  • 41. Determination of phosphoinositide binding to K(+) channel subunits using a protein-lipid overlay assay.
    Thomas AM; Tinker A
    Methods Mol Biol; 2008; 491():103-11. PubMed ID: 18998087
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanism of inward rectification in Kir channels.
    John SA; Xie LH; Weiss JN
    J Gen Physiol; 2004 May; 123(5):623-5. PubMed ID: 15078914
    [No Abstract]   [Full Text] [Related]  

  • 43. Arachidonic acid activates Kir2.3 channels by enhancing channel-phosphatidyl-inositol 4,5-bisphosphate interactions.
    Wang C; Mirshahi UL; Liu B; Jia Z; Mirshahi T; Zhang H
    Mol Pharmacol; 2008 Apr; 73(4):1185-94. PubMed ID: 18202303
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Channelopathies linked to plasma membrane phosphoinositides.
    Logothetis DE; Petrou VI; Adney SK; Mahajan R
    Pflugers Arch; 2010 Jul; 460(2):321-41. PubMed ID: 20396900
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Control of KirBac3.1 potassium channel gating at the interface between cytoplasmic domains.
    Zubcevic L; Bavro VN; Muniz JR; Schmidt MR; Wang S; De Zorzi R; Venien-Bryan C; Sansom MS; Nichols CG; Tucker SJ
    J Biol Chem; 2014 Jan; 289(1):143-51. PubMed ID: 24257749
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phosphoinositide sensitivity of ion channels, a functional perspective.
    Gamper N; Rohacs T
    Subcell Biochem; 2012; 59():289-333. PubMed ID: 22374095
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pacemaking by HCN channels requires interaction with phosphoinositides.
    Zolles G; Klöcker N; Wenzel D; Weisser-Thomas J; Fleischmann BK; Roeper J; Fakler B
    Neuron; 2006 Dec; 52(6):1027-36. PubMed ID: 17178405
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regulation of the ATP-sensitive K channel Kir6.2 by ATP and PIP(2).
    Ribalet B; John SA; Xie LH; Weiss JN
    J Mol Cell Cardiol; 2005 Jul; 39(1):71-7. PubMed ID: 15978904
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Review on regulation of inwardly rectifying potassium channels.
    Wang J; Huang Y; Ning Q
    Crit Rev Eukaryot Gene Expr; 2011; 21(4):303-11. PubMed ID: 22181700
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular aspects of structure, gating, and physiology of pH-sensitive background K2P and Kir K+-transport channels.
    SepĂșlveda FV; Pablo Cid L; Teulon J; Niemeyer MI
    Physiol Rev; 2015 Jan; 95(1):179-217. PubMed ID: 25540142
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genetic defects in the hotspot of inwardly rectifying K(+) (Kir) channels and their metabolic consequences: a review.
    Pattnaik BR; Asuma MP; Spott R; Pillers DA
    Mol Genet Metab; 2012 Jan; 105(1):64-72. PubMed ID: 22079268
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The molecular mechanism by which PIP(2) opens the intracellular G-loop gate of a Kir3.1 channel.
    Meng XY; Zhang HX; Logothetis DE; Cui M
    Biophys J; 2012 May; 102(9):2049-59. PubMed ID: 22824268
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Elementary properties of Kir2.1, a strong inwardly rectifying K(+) channel expressed by pigeon vestibular type II hair cells.
    Zampini V; Masetto S; Correia MJ
    Neuroscience; 2008 Sep; 155(4):1250-61. PubMed ID: 18652879
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of conserved glycines in pH gating of Kir1.1 (ROMK).
    Sackin H; Nanazashvili M; Palmer LG; Li H
    Biophys J; 2006 May; 90(10):3582-9. PubMed ID: 16533837
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A glutamate residue at the C terminus regulates activity of inward rectifier K+ channels: implication for Andersen's syndrome.
    Chen L; Kawano T; Bajic S; Kaziro Y; Itoh H; Art JJ; Nakajima Y; Nakajima S
    Proc Natl Acad Sci U S A; 2002 Jun; 99(12):8430-5. PubMed ID: 12034888
    [TBL] [Abstract][Full Text] [Related]  

  • 56. KirBac1.1: it's an inward rectifying potassium channel.
    Cheng WW; Enkvetchakul D; Nichols CG
    J Gen Physiol; 2009 Mar; 133(3):295-305. PubMed ID: 19204189
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Diverse gating in K+ channels: differential role of the pore-helix glutamate in stabilizing the channel pore.
    Raja M
    Biochem Biophys Res Commun; 2011 Sep; 413(1):1-4. PubMed ID: 21872570
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulation of Kir channels by intracellular pH and extracellular K(+): mechanisms of coupling.
    Dahlmann A; Li M; Gao Z; McGarrigle D; Sackin H; Palmer LG
    J Gen Physiol; 2004 Apr; 123(4):441-54. PubMed ID: 15051808
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Carboxy-terminal determinants of conductance in inward-rectifier K channels.
    Zhang YY; Robertson JL; Gray DA; Palmer LG
    J Gen Physiol; 2004 Dec; 124(6):729-39. PubMed ID: 15572348
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Insights into the structural nature of the transition state in the Kir channel gating pathway.
    Fowler PW; Bollepalli MK; Rapedius M; Nematian-Ardestani E; Shang L; Sansom MS; Tucker SJ; Baukrowitz T
    Channels (Austin); 2014; 8(6):551-5. PubMed ID: 25483285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.