These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 17520280)

  • 41. Genetic Regulation of Development in Sorghum bicolor (X. Greatly Attenuated Photoperiod Sensitivity in a Phytochrome-Deficient Sorghum Possessing a Biological Clock but Lacking a Red Light-High Irradiance Response).
    Childs KL; Lu JL; Mullet JE; Morgan PW
    Plant Physiol; 1995 May; 108(1):345-351. PubMed ID: 12228479
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ultrastructure of
    Uematsu S; Yabu T; Yao M; Kurihara T; Koga H
    J Nematol; 2020; 52():1-9. PubMed ID: 32628822
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phytochromes differentially regulate seed germination responses to light quality and temperature cues during seed maturation.
    Dechaine JM; Gardner G; Weinig C
    Plant Cell Environ; 2009 Oct; 32(10):1297-309. PubMed ID: 19453482
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photoperiodic Control of Flowering in Dark-Grown Seedlings of Pharbitis nil Choisy : The Effect of Skeleton and Continuous Light Photoperiods.
    Lumsden P; Thomas B; Vince-Prue D
    Plant Physiol; 1982 Jul; 70(1):277-82. PubMed ID: 16662460
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [The effects of night breaks on flowering of sinapis alba L].
    Hanke J; Hartmann KM; Mohr H
    Planta; 1969 Sep; 86(3):235-49. PubMed ID: 24515822
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of light quality on somatic embryogenesis in Araujia sericifera.
    Torné JM; Moysset L; Santos M; Simón E
    Physiol Plant; 2001 Mar; 111(3):405-411. PubMed ID: 11240926
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of phytochrome in photoperiodic time measurement and its relation to rhythmic timekeeping in the control of flowering in Chenopodium rubrum.
    King RW; Cumming BG
    Planta; 1972 Mar; 108(1):39-57. PubMed ID: 24473744
    [TBL] [Abstract][Full Text] [Related]  

  • 48. NnABI4-Mediated ABA Regulation of Starch Biosynthesis in Lotus (
    Wu P; Liu A; Zhang Y; Feng K; Zhao S; Li L
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948298
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of lotus root (the edible rhizome of Nelumbo nucifera) on the deveolopment of non-alcoholic fatty liver disease in obese diabetic db/db mice.
    Tsuruta Y; Nagao K; Shirouchi B; Nomura S; Tsuge K; Koganemaru K; Yanagita T
    Biosci Biotechnol Biochem; 2012; 76(3):462-6. PubMed ID: 22451385
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Indole-3-acetic acid levels after phytochrome-mediated changes in the stem elongation rate of dark- and light-grown Pisum seedlings.
    Behringer FJ; Davies PJ
    Planta; 1992 Aug; 188(1):85-92. PubMed ID: 24178203
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Light Spectra and Root Stocks Affect Response of Greenhouse Tomatoes to Long Photoperiod of Supplemental Lighting.
    Lanoue J; Thibodeau A; Little C; Zheng J; Grodzinski B; Hao X
    Plants (Basel); 2021 Aug; 10(8):. PubMed ID: 34451719
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A comparative proteomic analysis for adventitious root formation in lotus root (Nelumbo nucifera Gaertn).
    Libao C; Runzhi J; Mengli Y; Liangjun L; Shuyan L
    Z Naturforsch C J Biosci; 2017 May; 72(5-6):181-196. PubMed ID: 27831927
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular and characterization of NnPPO cDNA from lotus (Nelumbo nucifera) in rhizome browning.
    Dong C; Yu AQ; Yang MG; Zhou MQ; Hu ZL
    Cell Mol Biol (Noisy-le-grand); 2016 Apr; 62(4):67-72. PubMed ID: 27188738
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Kinetic Analysis of Phytochrome Controlled Mesocotyl Growth in Zea mays Seedlings.
    Yahalom A; Epel BL; Glinka Z; Macdonald IR; Gordon DC
    Plant Physiol; 1987 Jun; 84(2):390-4. PubMed ID: 16665449
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Blue light and phytochrome-mediated stomatal opening in the npq1 and phot1 phot2 mutants of Arabidopsis.
    Talbott LD; Shmayevich IJ; Chung Y; Hammad JW; Zeiger E
    Plant Physiol; 2003 Dec; 133(4):1522-9. PubMed ID: 14576287
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The sacred lotus genome provides insights into the evolution of flowering plants.
    Wang Y; Fan G; Liu Y; Sun F; Shi C; Liu X; Peng J; Chen W; Huang X; Cheng S; Liu Y; Liang X; Zhu H; Bian C; Zhong L; Lv T; Dong H; Liu W; Zhong X; Chen J; Quan Z; Wang Z; Tan B; Lin C; Mu F; Xu X; Ding Y; Guo AY; Wang J; Ke W
    Plant J; 2013 Nov; 76(4):557-67. PubMed ID: 23952714
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phytochrome photoreceptors mediate plasticity to light quality in flowers of the Brassicaceae.
    Weinig C
    Am J Bot; 2002 Feb; 89(2):230-5. PubMed ID: 21669731
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The influence of the photoperiodic regime and red-far red light treatments of Portulaca oleracea L. plants on the germinability of their seeds.
    Gutterman Y
    Oecologia; 1974 Mar; 17(1):27-38. PubMed ID: 28308638
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Expression rewiring and methylation of non-coding RNAs involved in rhizome phenotypic variations of lotus ecotypes.
    Zhang Y; Li H; Yang X; Chen J; Shi T
    Comput Struct Biotechnol J; 2022; 20():2848-2860. PubMed ID: 35765649
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A phytochrome/phototropin chimeric photoreceptor of fern functions as a blue/far-red light-dependent photoreceptor for phototropism in Arabidopsis.
    Kanegae T; Kimura I
    Plant J; 2015 Aug; 83(3):480-8. PubMed ID: 26095327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.