These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 17520443)

  • 41. Development of orally disintegrating tablets of Perphenazine/hydroxypropyl-β-cyclodextrin inclusion complex.
    Wang L; Zeng F; Zong L
    Pharm Dev Technol; 2013; 18(5):1101-10. PubMed ID: 22759202
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bioavailability of House Dust Mite Allergens in Sublingual Allergy Tablets Is Highly Dependent on the Formulation.
    Ohashi-Doi K; Kito H; Du W; Nakazawa H; Ipsen H; Gudmann P; Lund K
    Int Arch Allergy Immunol; 2017; 174(1):26-34. PubMed ID: 28950271
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Formulation, development, and performance evaluation of metoclopramide HCl oro-dispersible sustained release tablet.
    Kasliwal N; Negi JS; Jugran V; Jain R
    Arch Pharm Res; 2011 Oct; 34(10):1691-700. PubMed ID: 22076769
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Formulation development and evaluation of fast disintegrating tablets of salbutamol sulphate for respiratory disorders.
    Sharma D
    ISRN Pharm; 2013; 2013():674507. PubMed ID: 23956881
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of protein release rates from tablet formulations on the immune response after sublingual immunization.
    Borde A; Ekman A; Holmgren J; Larsson A
    Eur J Pharm Sci; 2012 Nov; 47(4):695-700. PubMed ID: 22959953
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Utility of Microcrystalline Cellulose for Improving Drug Content Uniformity in Tablet Manufacturing Using Direct Powder Compression.
    Nakamura S; Tanaka C; Yuasa H; Sakamoto T
    AAPS PharmSciTech; 2019 Mar; 20(4):151. PubMed ID: 30903317
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of oral dispersible tablets containing prednisolone nanoparticles for the management of pediatric asthma.
    Chen YD; Liang ZY; Cen YY; Zhang H; Han MG; Tian YQ; Zhang J; Li SJ; Yang DS
    Drug Des Devel Ther; 2015; 9():5815-25. PubMed ID: 26640367
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of rapidly disintegrating tablets prepared by a direct compression method.
    Bi YX; Sunada H; Yonezawa Y; Danjo K
    Drug Dev Ind Pharm; 1999 May; 25(5):571-81. PubMed ID: 10219525
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis of a novel superdisintegrant by starch derivatization with polysuccinimide and its application for the development of Ondansetron fast dissolving tablet.
    Sadeghi M; Hemmati S; Hamishehkar H
    Drug Dev Ind Pharm; 2016; 42(5):769-75. PubMed ID: 26289005
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Relationships between response surfaces for tablet characteristics of placebo and API-containing tablets manufactured by direct compression method.
    Hayashi Y; Tsuji T; Shirotori K; Oishi T; Kosugi A; Kumada S; Hirai D; Takayama K; Onuki Y
    Int J Pharm; 2017 Oct; 532(1):82-89. PubMed ID: 28859939
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Disintegrants combination: development and optimization of a cefadroxil fast disintegrating tablet.
    Rahim N; Naqvi SB; Bibi R; Iffat W; Shakeel S; Muhammad IN
    Pak J Pharm Sci; 2014 Sep; 27(5 Spec no):1467-75. PubMed ID: 25176230
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Investigating the effect of processing parameters on pharmaceutical tablet disintegration using a real-time particle imaging approach.
    Rajkumar AD; Reynolds GK; Wilson D; Wren S; Hounslow MJ; Salman AD
    Eur J Pharm Biopharm; 2016 Sep; 106():88-96. PubMed ID: 27287552
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of a stable sublingual nitroglycerin tablet II: formulation and evaluation of tablets containing povidone.
    Fung HL; Yap SK; Rhodes CT
    J Pharm Sci; 1976 Apr; 65(4):558-60. PubMed ID: 818363
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of Fast-Disintegrating Tablets' Characteristics on the Sublingual Permeability of Atropine Sulfate for the Potential Treatment of Organophosphates Toxicity.
    Aodah A; Rawas-Qalaji M; Bafail R; Rawas-Qalaji M
    AAPS PharmSciTech; 2019 Jun; 20(6):229. PubMed ID: 31227930
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Formulation and in vivo evaluation of ondansetron orally disintegrating tablets using different superdisintegrants.
    Sheshala R; Khan N; Chitneni M; Darwis Y
    Arch Pharm Res; 2011 Nov; 34(11):1945-56. PubMed ID: 22139694
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Further improvement of orally disintegrating tablets using micronized ethylcellulose.
    Okuda Y; Irisawa Y; Okimoto K; Osawa T; Yamashita S
    Int J Pharm; 2012 Feb; 423(2):351-9. PubMed ID: 22138608
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of geometric structure and surface wettability of glidant on tablet hardness.
    Ohta KM; Fuji M; Takei T; Chikazawa M
    Int J Pharm; 2003 Aug; 262(1-2):75-82. PubMed ID: 12927389
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Statistical evaluation of influence of polymers concentration on disintegration time and diazepam release from quick-disintegrating rapid release tablet.
    Giri TK; Sa B
    Yakugaku Zasshi; 2009 Sep; 129(9):1069-75. PubMed ID: 19721383
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Formulation of orodispersible tablets of ondansetron HCl: investigations using glycine-chitosan mixture as superdisintegrant.
    Goel H; Vora N; Tiwary AK; Rana V
    Yakugaku Zasshi; 2009 May; 129(5):513-21. PubMed ID: 19420882
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Punch geometry and formulation considerations in reducing tablet friability and their effect on in vitro dissolution.
    Chowhan ZT; Amaro AA; Ong JT
    J Pharm Sci; 1992 Mar; 81(3):290-4. PubMed ID: 1640370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.