BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1133 related articles for article (PubMed ID: 17520480)

  • 21. Raft domain reorganization driven by short- and long-chain ceramide: a combined AFM and FCS study.
    Chiantia S; Kahya N; Schwille P
    Langmuir; 2007 Jul; 23(14):7659-65. PubMed ID: 17564472
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes.
    Crane JM; Tamm LK
    Biophys J; 2004 May; 86(5):2965-79. PubMed ID: 15111412
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Atomic force microscopy study of ganglioside GM1 concentration effect on lateral phase separation of sphingomyelin/dioleoylphosphatidylcholine/cholesterol bilayers.
    Bao R; Li L; Qiu F; Yang Y
    J Phys Chem B; 2011 May; 115(19):5923-9. PubMed ID: 21526782
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanomechanical recognition of sphingomyelin-rich membrane domains by atomic force microscopy.
    Wang T; Shogomori H; Hara M; Yamada T; Kobayashi T
    Biochemistry; 2012 Jan; 51(1):74-82. PubMed ID: 22148674
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms of antimicrobial peptide action: studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy.
    Shaw JE; Alattia JR; Verity JE; Privé GG; Yip CM
    J Struct Biol; 2006 Apr; 154(1):42-58. PubMed ID: 16459101
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comprehensive molecular motion capture for sphingomyelin by site-specific deuterium labeling.
    Matsumori N; Yasuda T; Okazaki H; Suzuki T; Yamaguchi T; Tsuchikawa H; Doi M; Oishi T; Murata M
    Biochemistry; 2012 Oct; 51(42):8363-70. PubMed ID: 23016915
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Syntaxin is efficiently excluded from sphingomyelin-enriched domains in supported lipid bilayers containing cholesterol.
    Saslowsky DE; Lawrence JC; Henderson RM; Edwardson JM
    J Membr Biol; 2003 Aug; 194(3):153-64. PubMed ID: 14502428
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains.
    Anderson RG; Jacobson K
    Science; 2002 Jun; 296(5574):1821-5. PubMed ID: 12052946
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes.
    Wiśniewska A; Draus J; Subczynski WK
    Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Physical arrangement of membrane lipids susceptible to being used in the process of cell sorting of proteins].
    Wolf C; Quinn P; Koumanov K; Chachaty C; Tenchov B
    J Soc Biol; 1999; 193(2):117-23. PubMed ID: 10451343
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains.
    Pinto SN; Fernandes F; Fedorov A; Futerman AH; Silva LC; Prieto M
    Biochim Biophys Acta; 2013 Sep; 1828(9):2099-110. PubMed ID: 23702462
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sphingomyelin Stereoisomers Reveal That Homophilic Interactions Cause Nanodomain Formation.
    Yano Y; Hanashima S; Yasuda T; Tsuchikawa H; Matsumori N; Kinoshita M; Al Sazzad MA; Slotte JP; Murata M
    Biophys J; 2018 Oct; 115(8):1530-1540. PubMed ID: 30274830
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phase separation is induced by phenothiazine derivatives in phospholipid/sphingomyelin/cholesterol mixtures containing low levels of cholesterol and sphingomyelin.
    Hendrich AB; Michalak K; Wesołowska O
    Biophys Chem; 2007 Oct; 130(1-2):32-40. PubMed ID: 17662517
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Making a tool of an artifact: the application of photoinduced Lo domains in giant unilamellar vesicles to the study of Lo/Ld phase spinodal decomposition and its modulation by the ganglioside GM1.
    Staneva G; Seigneuret M; Conjeaud H; Puff N; Angelova MI
    Langmuir; 2011 Dec; 27(24):15074-82. PubMed ID: 22026409
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biosynthesis, remodelling and functions of mammalian GPI-anchored proteins: recent progress.
    Kinoshita T; Fujita M; Maeda Y
    J Biochem; 2008 Sep; 144(3):287-94. PubMed ID: 18635593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phase diagram of a polyunsaturated lipid mixture: Brain sphingomyelin/1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine/cholesterol.
    Konyakhina TM; Feigenson GW
    Biochim Biophys Acta; 2016 Jan; 1858(1):153-61. PubMed ID: 26525664
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes.
    Samsonov AV; Mihalyov I; Cohen FS
    Biophys J; 2001 Sep; 81(3):1486-500. PubMed ID: 11509362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinguishing individual lipid headgroup mobility and phase transitions in raft-forming lipid mixtures with 31P MAS NMR.
    Holland GP; McIntyre SK; Alam TM
    Biophys J; 2006 Jun; 90(11):4248-60. PubMed ID: 16533851
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of glycosyl-phosphatidylinositol membrane protein anchorage.
    Hooper NM
    Proteomics; 2001 Jun; 1(6):748-55. PubMed ID: 11677780
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains.
    Schroeder RJ; Ahmed SN; Zhu Y; London E; Brown DA
    J Biol Chem; 1998 Jan; 273(2):1150-7. PubMed ID: 9422781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 57.