These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 17520481)

  • 1. Actin is not required for nanotubular protrusions of primary astrocytes grown on metal nano-lawn.
    Gimsa U; Iglic A; Fiedler S; Zwanzig M; Kralj-Iglic V; Jonas L; Gimsa J
    Mol Membr Biol; 2007; 24(3):243-55. PubMed ID: 17520481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Curvature-induced accumulation of anisotropic membrane components and raft formation in cylindrical membrane protrusions.
    Iglic A; Hägerstrand H; Veranic P; Plemenitas A; Kralj-Iglic V
    J Theor Biol; 2006 Jun; 240(3):368-73. PubMed ID: 16277995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of the GTPase dynamin or actin depolymerisation initiates outward plasma membrane tubulation/vesiculation (cytoneme formation) in neutrophils.
    Galkina SI; Fedorova NV; Serebryakova MV; Arifulin EA; Stadnichuk VI; Gaponova TV; Baratova LA; Sud'ina GF
    Biol Cell; 2015 May; 107(5):144-58. PubMed ID: 25655190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actin cytoskeleton remodeling governs aquaporin-4 localization in astrocytes.
    Nicchia GP; Rossi A; Mola MG; Procino G; Frigeri A; Svelto M
    Glia; 2008 Dec; 56(16):1755-66. PubMed ID: 18649401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early molecular events in the assembly of the focal adhesion-stress fiber complex during fibroblast spreading.
    Zimerman B; Volberg T; Geiger B
    Cell Motil Cytoskeleton; 2004 Jul; 58(3):143-59. PubMed ID: 15146534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possible role of flexible red blood cell membrane nanodomains in the growth and stability of membrane nanotubes.
    Iglic A; Lokar M; Babnik B; Slivnik T; Veranic P; Hägerstrand H; Kralj-Iglic V
    Blood Cells Mol Dis; 2007; 39(1):14-23. PubMed ID: 17475520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization of selenium-binding protein at the tips of rapidly extending protrusions.
    Miyaguchi K
    Histochem Cell Biol; 2004 May; 121(5):371-6. PubMed ID: 15108003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localised depletion of polymerised actin at the front of Walker carcinosarcoma cells increases the speed of locomotion.
    Keller H; Zadeh AD; Eggli P
    Cell Motil Cytoskeleton; 2002 Nov; 53(3):189-202. PubMed ID: 12211101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redundancy of lamellipodia in locomoting Walker carcinosarcoma cells.
    Keller HU
    Cell Motil Cytoskeleton; 2000 Aug; 46(4):247-56. PubMed ID: 10962479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Actin-Membrane Release Initiates Cell Protrusions.
    Welf ES; Miles CE; Huh J; Sapoznik E; Chi J; Driscoll MK; Isogai T; Noh J; Weems AD; Pohlkamp T; Dean K; Fiolka R; Mogilner A; Danuser G
    Dev Cell; 2020 Dec; 55(6):723-736.e8. PubMed ID: 33308479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the role of external force of actin filaments in the formation of tubular protrusions of closed membrane shapes with anisotropic membrane components.
    Mesarec L; Góźdź W; Kralj S; Fošnarič M; Penič S; Kralj-Iglič V; Iglič A
    Eur Biophys J; 2017 Dec; 46(8):705-718. PubMed ID: 28488019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Staurosporine induces formation of two types of extra-long cell protrusions: actin-based filaments and microtubule-based shafts.
    Kohno T; Ninomiya T; Kikuchi S; Konno T; Kojima T
    Mol Pharmacol; 2015 May; 87(5):815-24. PubMed ID: 25680752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Ways of Actin: Why Tunneling Nanotubes Are Unique Cell Protrusions.
    Ljubojevic N; Henderson JM; Zurzolo C
    Trends Cell Biol; 2021 Feb; 31(2):130-142. PubMed ID: 33309107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel function of WAVE in lamellipodia: WAVE1 is required for stabilization of lamellipodial protrusions during cell spreading.
    Yamazaki D; Fujiwara T; Suetsugu S; Takenawa T
    Genes Cells; 2005 May; 10(5):381-92. PubMed ID: 15836768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization of tissue factor in actin-filament-rich membrane areas of epithelial cells.
    Müller M; Albrecht S; Gölfert F; Hofer A; Funk RH; Magdolen V; Flössel C; Luther T
    Exp Cell Res; 1999 Apr; 248(1):136-47. PubMed ID: 10094821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Actin polymerization promotes the reversal of streaming in the apex of pollen tubes.
    Cárdenas L; Lovy-Wheeler A; Wilsen KL; Hepler PK
    Cell Motil Cytoskeleton; 2005 Jun; 61(2):112-27. PubMed ID: 15849722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell membrane extensions, generated by mechanical constraint, are associated with a sustained lipid raft patching and an increased cell signaling.
    Larive RM; Baisamy L; Urbach S; Coopman P; Bettache N
    Biochim Biophys Acta; 2010 Mar; 1798(3):389-400. PubMed ID: 19962956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blebbing dynamics during endothelial cell spreading.
    Norman L; Sengupta K; Aranda-Espinoza H
    Eur J Cell Biol; 2011 Jan; 90(1):37-48. PubMed ID: 21087809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IRSp53: crossing the road of membrane and actin dynamics in the formation of membrane protrusions.
    Scita G; Confalonieri S; Lappalainen P; Suetsugu S
    Trends Cell Biol; 2008 Feb; 18(2):52-60. PubMed ID: 18215522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gelsolin overexpression alters actin dynamics and tyrosine phosphorylation of lipid raft-associated proteins in Jurkat T cells.
    Morley SC; Sung J; Sun GP; Martelli MP; Bunnell SC; Bierer BE
    Mol Immunol; 2007 Mar; 44(9):2469-80. PubMed ID: 17178161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.