These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 17520575)

  • 21. Steady and transient flow analysis of a magnetically levitated pediatric VAD: time varying boundary conditions.
    Throckmorton AL; Tahir SA; Lopes SP; Rangus OM; Sciolino MG
    Int J Artif Organs; 2013 Oct; 36(10):693-9. PubMed ID: 24254838
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Computational Fluid Dynamics Rupture Challenge 2013--Phase II: Variability of Hemodynamic Simulations in Two Intracranial Aneurysms.
    Berg P; Roloff C; Beuing O; Voss S; Sugiyama S; Aristokleous N; Anayiotos AS; Ashton N; Revell A; Bressloff NW; Brown AG; Chung BJ; Cebral JR; Copelli G; Fu W; Qiao A; Geers AJ; Hodis S; Dragomir-Daescu D; Nordahl E; Bora Suzen Y; Owais Khan M; Valen-Sendstad K; Kono K; Menon PG; Albal PG; Mierka O; Münster R; Morales HG; Bonnefous O; Osman J; Goubergrits L; Pallares J; Cito S; Passalacqua A; Piskin S; Pekkan K; Ramalho S; Marques N; Sanchi S; Schumacher KR; Sturgeon J; Švihlová H; Hron J; Usera G; Mendina M; Xiang J; Meng H; Steinman DA; Janiga G
    J Biomech Eng; 2015 Dec; 137(12):121008. PubMed ID: 26473395
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Shape optimization of the diffuser blade of an axial blood pump by computational fluid dynamics.
    Zhu L; Zhang X; Yao Z
    Artif Organs; 2010 Mar; 34(3):185-92. PubMed ID: 20447042
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of Cone-Shaped Bend Inlet Cannulas of an Axial Blood Pump on Thrombus Formation: An Experiment and Simulation Study.
    Liu G; Zhou J; Sun H; Zhang Y; Chen H; Hu S
    Med Sci Monit; 2017 Apr; 23():1655-1661. PubMed ID: 28379938
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Validation of Numerical Simulations of Thoracic Aorta Hemodynamics: Comparison with In Vivo Measurements and Stochastic Sensitivity Analysis.
    Boccadifuoco A; Mariotti A; Capellini K; Celi S; Salvetti MV
    Cardiovasc Eng Technol; 2018 Dec; 9(4):688-706. PubMed ID: 30357714
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Validation of the coupling of magnetic resonance imaging velocity measurements with computational fluid dynamics in a U bend.
    Glor FP; Westenberg JJ; Vierendeels J; Danilouchkine M; Verdonck P
    Artif Organs; 2002 Jul; 26(7):622-35. PubMed ID: 12081521
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intra-aneurysmal flow patterns and wall shear stresses calculated with computational flow dynamics in an anterior communicating artery aneurysm depend on knowledge of patient-specific inflow rates.
    Karmonik C; Yen C; Grossman RG; Klucznik R; Benndorf G
    Acta Neurochir (Wien); 2009 May; 151(5):479-85; discussion 485. PubMed ID: 19343271
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements.
    Rayz VL; Boussel L; Acevedo-Bolton G; Martin AJ; Young WL; Lawton MT; Higashida R; Saloner D
    J Biomech Eng; 2008 Oct; 130(5):051011. PubMed ID: 19045518
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of a continuous flow centrifugal pediatric ventricular assist device.
    Throckmorton AL; Wood HG; Day SW; Song X; Click PC; Allaire PE; Olsen DB
    Int J Artif Organs; 2003 Nov; 26(11):1015-31. PubMed ID: 14708831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A validated computational fluid dynamics model to estimate hemolysis in a rotary blood pump.
    Arvand A; Hormes M; Reul H
    Artif Organs; 2005 Jul; 29(7):531-40. PubMed ID: 15982281
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Numerical simulation of LVAD inflow cannulas with different tips].
    Liu G; Zhou J; Hu S; Sun H; Chen H; Zhang Y; Luo F
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Feb; 30(1):141-8. PubMed ID: 23488155
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a radial ventricular assist device using numerical predictions and experimental haemolysis.
    Carswell D; Hilton A; Chan C; McBride D; Croft N; Slone A; Cross M; Foster G
    Med Eng Phys; 2013 Aug; 35(8):1197-203. PubMed ID: 23384537
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational flow visualization in vibrating flow pump type artificial heart by unstructured grid.
    Kato T; Kawano S; Nakahashi K; Yambe T; Nitta S; Hashimoto H
    Artif Organs; 2003 Jan; 27(1):41-8. PubMed ID: 12534712
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrodynamic characteristics of the helical flow pump.
    Ishii K; Hosoda K; Nishida M; Isoyama T; Saito I; Ariyoshi K; Inoue Y; Ono T; Nakagawa H; Sato M; Hara S; Lee X; Wu SY; Imachi K; Abe Y
    J Artif Organs; 2015 Sep; 18(3):206-12. PubMed ID: 25784463
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of the small caliber centrifugal blood pump.
    Miyazoe Y; Sawairi T; Ito K; Yana J
    Artif Organs; 1998 Jun; 22(6):461-5. PubMed ID: 9650666
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational design and experimental performance testing of an axial-flow pediatric ventricular assist device.
    Throckmorton AL; Lim DS; McCulloch MA; Jiang W; Song X; Allaire PE; Wood HG; Olsen DB
    ASAIO J; 2005; 51(5):629-35. PubMed ID: 16322729
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flow mixing and fluid residence times in a model of a ventricular assist device.
    König CS; Clark C
    Med Eng Phys; 2001 Mar; 23(2):99-110. PubMed ID: 11413062
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study of Estimation Method for Unsteady Inflow Velocity in Two-Dimensional Ultrasonic-Measurement-Integrated Blood Flow Simulation.
    Kadowaki H; Hayase T; Funamoto K; Taniguchi N
    IEEE Trans Biomed Eng; 2016 Feb; 63(2):403-14. PubMed ID: 26241967
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of blood rheological models for physiological flow simulation.
    Neofytou P
    Biorheology; 2004; 41(6):693-714. PubMed ID: 15851845
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.