These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 17520745)

  • 1. Flavoprotein autofluorescence imaging in the cerebellar cortex in vivo.
    Reinert KC; Gao W; Chen G; Ebner TJ
    J Neurosci Res; 2007 Nov; 85(15):3221-32. PubMed ID: 17520745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flavoprotein autofluorescence imaging of neuronal activation in the cerebellar cortex in vivo.
    Reinert KC; Dunbar RL; Gao W; Chen G; Ebner TJ
    J Neurophysiol; 2004 Jul; 92(1):199-211. PubMed ID: 14985415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular and metabolic origins of flavoprotein autofluorescence in the cerebellar cortex in vivo.
    Reinert KC; Gao W; Chen G; Wang X; Peng YP; Ebner TJ
    Cerebellum; 2011 Sep; 10(3):585-99. PubMed ID: 21503591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short-term plasticity visualized with flavoprotein autofluorescence in the somatosensory cortex of anaesthetized rats.
    Murakami H; Kamatani D; Hishida R; Takao T; Kudoh M; Kawaguchi T; Tanaka R; Shibuki K
    Eur J Neurosci; 2004 Mar; 19(5):1352-60. PubMed ID: 15016093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-frequency oscillations in the cerebellar cortex of the tottering mouse.
    Chen G; Popa LS; Wang X; Gao W; Barnes J; Hendrix CM; Hess EJ; Ebner TJ
    J Neurophysiol; 2009 Jan; 101(1):234-45. PubMed ID: 18987121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical imaging of cerebellar functional architectures: parallel fiber beams, parasagittal bands and spreading acidification.
    Ebner TJ; Chen G; Gao W; Reinert K
    Prog Brain Res; 2005; 148():125-38. PubMed ID: 15661186
    [No Abstract]   [Full Text] [Related]  

  • 7. Dynamic imaging of somatosensory cortical activity in the rat visualized by flavoprotein autofluorescence.
    Shibuki K; Hishida R; Murakami H; Kudoh M; Kawaguchi T; Watanabe M; Watanabe S; Kouuchi T; Tanaka R
    J Physiol; 2003 Jun; 549(Pt 3):919-27. PubMed ID: 12730344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebellar cortical molecular layer inhibition is organized in parasagittal zones.
    Gao W; Chen G; Reinert KC; Ebner TJ
    J Neurosci; 2006 Aug; 26(32):8377-87. PubMed ID: 16899733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcranial flavoprotein fluorescence imaging of mouse cortical activity and plasticity.
    Tohmi M; Takahashi K; Kubota Y; Hishida R; Shibuki K
    J Neurochem; 2009 May; 109 Suppl 1():3-9. PubMed ID: 19393002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of activity-dependent changes in flavoprotein fluorescence in cerebellar slices from juvenile rats.
    Jotty K; Shuttleworth CW; Valenzuela CF
    Neurosci Lett; 2015 Jan; 584():17-22. PubMed ID: 25301569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional imaging of primary visual cortex using flavoprotein autofluorescence.
    Husson TR; Mallik AK; Zhang JX; Issa NP
    J Neurosci; 2007 Aug; 27(32):8665-75. PubMed ID: 17687044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcranial photo-inactivation of neural activities in the mouse auditory cortex.
    Kubota Y; Kamatani D; Tsukano H; Ohshima S; Takahashi K; Hishida R; Kudoh M; Takahashi S; Shibuki K
    Neurosci Res; 2008 Apr; 60(4):422-30. PubMed ID: 18291543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autofluorescence properties of rat cerebellum cortex during postnatal development.
    Croce AC; Pisu MB; Roda E; Avella D; Bernocchi G; Bottiroli G
    Lasers Surg Med; 2006 Jul; 38(6):598-607. PubMed ID: 16770771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noninvasive measurements of pyridine nucleotide and flavoprotein in the lens.
    Tsubota K; Laing RA; Kenyon KR
    Invest Ophthalmol Vis Sci; 1987 May; 28(5):785-9. PubMed ID: 3570689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of the amplitude of NAD(P)H fluorescence transients after synaptic stimulation.
    Brennan AM; Connor JA; Shuttleworth CW
    J Neurosci Res; 2007 Nov; 85(15):3233-43. PubMed ID: 17497703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular and subcellular rat brain spermidine synthase expression patterns suggest region-specific roles for polyamines, including cerebellar pre-synaptic function.
    Krauss M; Weiss T; Langnaese K; Richter K; Kowski A; Veh RW; Laube G
    J Neurochem; 2007 Oct; 103(2):679-93. PubMed ID: 17635671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The organization of spatial frequency maps measured by cortical flavoprotein autofluorescence.
    Mallik AK; Husson TR; Zhang JX; Rosenberg A; Issa NP
    Vision Res; 2008 Jun; 48(14):1545-53. PubMed ID: 18511098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oscillations in the cerebellar cortex: a prediction of their frequency bands.
    Maex R; De Schutter E
    Prog Brain Res; 2005; 148():181-8. PubMed ID: 15661190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution mapping of neuronal activity by thallium autometallography.
    Goldschmidt J; Zuschratter W; Scheich H
    Neuroimage; 2004 Oct; 23(2):638-47. PubMed ID: 15488413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unravelling cerebellar circuitry: an optical imaging study.
    Cohen D; Yarom Y
    Prog Brain Res; 2000; 124():107-14. PubMed ID: 10943120
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.